
A Domain-Specific Language for
Minecraft

Honours Programme Bachelor Report

J.H. (Jochem) Broekhoff

A Domain-Specific Language for
Minecraft

REPORT

submitted in partial fulfillment of the
requirements for the

HONOURS PROGRAMME BACHELOR

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.tudelft.nl/eemcs

www.tudelft.nl/eemcs

© 2022 J.H. (Jochem) Broekhoff.

“Minecraft” is a trademark of Mojang Synergies AB.
NOT AN OFFICIAL MINECRAFT PRODUCT.
NOT APPROVED BY OR ASSOCIATEDWITH MOJANG.

Cover picture: DALL·E art: https://labs.openai.com/s/b14qOH9XBYCRtyhcCGDb6doF

https://labs.openai.com/s/b14qOH9XBYCRtyhcCGDb6doF

A Domain-Specific Language for
Minecraft

Author: J.H. (Jochem) Broekhoff
Email: J.H.Broekhoff@student.tudelft.nl

Abstract

The popular video game Minecraft offers a feature-rich environment for building ex-
tensions. Unfortunately, the learning curve is steep for new users as it requires a non-
conventional way of thinking about data organization and program flow in a highly ver-
bose and error-prone syntax. We propose Gazebo, a new domain-specific language, in-
spired by existing community efforts and our earlier work, that aims to provide a more
natural and expressive way of programming for Minecraft. The language is fully imple-
mented using the Spoofax Language Workbench, resulting in a product with editor sup-
port and a stand-alone command line interface. We report on the design of the language,
its compilation pipeline and our experiences with using Spoofax to achieve this.

Supervisors:

Dr. J.G.H. (Jesper) Cockx, Faculty EEMCS, TU Delft
A.S. (Aron) Zwaan, Faculty EEMCS, TU Delft
Prof. dr. E. (Eelco) Visser, Faculty EEMCS, TU Delft

J.H.Broekhoff@student.tudelft.nl

Contents

Contents iii

List of Figures v

List of Tables v

1 Introduction 1

2 Pipeline Summarized 5
2.1 A Brief Intro to Spoofax and Compiler Construction 5
2.2 Schematic Overview . 6

3 Implementation Key Aspects 9
3.1 High-Level Language Design and Features . 9
3.2 Type System . 11
3.3 Transformation Architecture . 14
3.4 Stand-Alone Compiler . 18

4 Project Evaluation 21
4.1 Learning Points . 21
4.2 State of Completion . 22
4.3 Minecraft Support Considerations . 22

5 A Review of Spoofax 2 23
5.1 Architectural Limitations . 23
5.2 Using Spoofax in Stand-Alone Fashion . 25

6 Conclusion & Future Work 27

Bibliography 29

Glossary 31

Acronyms 33

A Language Design & Features 35
A.1 Modules: Project Directory and File Structure 35
A.2 Body: Expressions . 36
A.3 Body: Statements and Control Flow . 38
A.4 Files: Top-Level Entries . 40

iii

CONTENTS

B Architecture of the Stand-Alone Compiler 43
B.1 Visual Summary . 43
B.2 Message Printing and Logging . 44
B.3 Overlay Task Structure . 45
B.4 Language Archive Loading . 45
B.5 Intermediate Passing Optimization . 46
B.6 Result Data Pack Packaging . 46

C Standard Libraries 49
C.1 Standard Library Contents . 49
C.2 Automated Construction . 49
C.3 Performance Considerations . 50

iv

List of Figures

2.2 High-level schematic overview of the Gazebo compilation pipeline in Spoofax . . 7

B.1 Schematic of the Gazebo stand-alone (GZBS) architecture, most relevant parts . 44

List of Tables

1.1 Comparison of existing community efforts related to our new developments. . . 1

2.1 Explicit usage of meta-domain-specific languages (DSLs) by the different compo-
nents of Gazebo . 7

3.1 Available type classes and their syntactical representation 13
3.2 Example expressions for each type class and their derived types 13

v

List of Listings

3.1 Functions and globals with modularity . 10
3.2 Selectors and aliases with first-class type-safe data access 11
3.3 Conventional control flow in Gazebo . 12
3.4 Constructing and using enums . 14
3.5 Constructing default values for arrays, lists and interfaces 15
3.6 Desugaring of selectors and mixins in Gazebo core syntax (GZBC) 16
3.7 Transformation of a functiondefinition fromGazebo surface/main syntax (GZB)

to GZBC, continued in listing 3.8 to Low-Level Minecraft Commands (LLMC) 17
3.8 Transforming a function definition from listing 3.7 in GZBC to LLMC, demon-

strating how flow control in LLMC becomes tedious 18
A.1 Typical project structure of a Gazebo project . 35
A.2 Explicitly importing members from other modules 36
A.3 Literals and data structures in GZB . 37
A.4 Selectors in GZB . 37
A.5 Variable declaration, referencing and assignment in GZB 38
A.6 Execute statement in GZB . 39
A.7 Raw statement in GZB: the say function . 40
A.8 Functions in GZB . 40
A.9 Selector aliases in GZB . 41
B.1 Usage example of GZBS overlay task chaining 45

vii

Chapter 1

Introduction

The video game Minecraft is the best-selling game of all time, released in 2011. Especially
among the younger generation it is, or has been, highly popular and has played a significant
role in their lives. Starting in the early days, the game has offered a chat-line based interface
for sending commands to the game engine. With recent new releases of the game, these
mechanisms have become more and more powerful, efficient and expressive. Notably, with
the release of version 1.12 in 2017, it is possible to cluster these commands in batch, referred
to as a ‘function’. Even though the command system offers a vast feature set, its learning
curve and general accessibility leave a lot to be desired.

To aid programmers, community projects targeting early versions of the game, such as
Command Block Parser (ZipKrowd Team 2016) and Redstone Programming Language (Gromov
2014) implemented preprocessor engines. This trend has continued with Mecha (Berlier
2021) and McScript (Stevertus 2020). Other recent developments, such as Trident (Ener-
gyxxer 2019) and Command Block Assembly (Simon816 2017), have put more focus on intro-
ducing higher-level features and creating a conventional language experience. In this line,
Scarpet, as part of the Fabric Carpet Mod (Gnembon 2019), has been developed to provide a
native scripting language for Minecraft, however it requires the installation on a mod, which
requires more effort from end-users, but delivers the most powerful features.

Their feature sets differ greatly, and only have limited overlap, as can be seen summarized
in table 1.1. Command Block Assembly attempts to provide a C++-like experience, while Trident
on is closer to our developments, as it puts the most focus on the DSL aspect, while still
strongly trying to adhere to and integratewith the commonMinecraft command conventions.
The preprocessor-based approaches are not true programming languages with nontrivial
compilation processes, but rather tools to aid the writing of repetitive Minecraft commands.

Another approach found in the community is that of a holistic data pack development

Project Target Build logic
embedded

Non-trivial
compilation Type-safe

Command Block Assembly MCFunction • • ◦
Command Block Parser command block • ◦
Redstone Programming Language command block ◦
McScript MCFunction ◦
Mecha MCFunction • ◦
Trident MCFunction • • ◦
Ours (Gazebo) MCFunction • • •

Table 1.1: Comparison of existing community efforts related to our new developments.

1

1. INTRODUCTION

framework. Two prominent examples are Beet (Berlier 2020) andmore recentlyObjD (Stever-
tus 2022). These projects do not necessarily focus on function-level programming, but rather
on the whole process of creating a data pack, of which writing functions is just a part.

Despite these efforts, none focus on developing a language that is both truly natural to
the developer audience and that offers a feature set comparable to conventional languages
and is fully type-safe. This technical report describes the process of implementing a new
programming language, named Gazebo, that attempts to address some open issues with
regards to type safety and ease-of-use.

Most notably, existing solutions do not offer full type safety, if any at all, as conventionally,
types are only checked at runtime. The game itself only verifies the validity based on syntax
rules, which by far do not account for all possible typing errors. Thus, tools that do perform
some deeper level of analysis, be it linting or full type checking, need more context than the
game itself has. That is the essential reason why a DSL is worth exploring, as the required
context can inherently be gathered.

Spoofax Language Workbench
In particular, this report describes the process of implementation using the Spoofax Language
Workbench (Spoofax Team 2021; Kats and Visser 2010).

The project first and foremost serves as an evaluation of the current state of Spoofax 2. We
do this by means of an in-depth review of the experiences, which can be found in section 5.
Since the inception of Stratego/XT, followed by MetaBorg and finally Spoofax, many aspects
have changed. More will change in the future, especially with Spoofax 3 in development. In
our review, we try to identify possible points of improvement that may be incorporated in
these future releases. Our work covers the entire breadth of Spoofax, from high-level usage
to the inner workings of the Java application programming interface (API).

In literature there have been numerous publications of languages or projects being imple-
mented using Spoofax, such as the first version of WebDSL (Groenewegen et al. 2008) and
Apply (Hamey and Goldrei 2008) in Stratego/XT, several languages (Bravenboer, Groot, and
Visser 2006) in MetaBorg, and Grace (Haisma 2017) in Spoofax. This report attempts to put
more focus on the usability aspect of the workbench, while also serving as a walk-through
for new users.

Spoofax offers most of its features in the form of a (meta) DSL. This means that the lan-
guages in which we define particular aspects of our language are themselves defined using
Spoofax, making it a self-hosting environment. Of these, we use the following:

• Syntax Definition Formalism 3 (SDF3): syntax specification.

• Statix: static semantics specification: type checking and name binding.

• Stratego: transformations between intermediate stages; final assembly.

• Editor Services (ESV): Eclipse editor configuration: menu action items and syntax
highlighting.

Report Outline
The first two chapters are dedicated to the design and implementation of the language it-
self. We first summarize the entire processing pipeline in chapter 2. Then, in chapter 3 we
elaborate on some key aspects of the implementation.

Wemove on to project-related content startingwith chapter 4, wherewe evaluate the state
of the projectwith respect to theHonours Programme. In chapter 5, we cover our experiences

2

with Spoofax and give some points of criticism. Finally, with chapter 6, we conclude the
report and give some pointers for future work.

For completeness and more background information, we have included several appen-
dices. Appendix A goes into more detail on the feature set of the language. Appendix B
explains how a stand-alone command-line interface (CLI) has been constructed using the
Spoofax Core API, combining all aspects of our language. Finally, appendix C covers the
contents and automated construction of the standard libraries.

The full source code of the project implementation can be checked out from the following
Git repository: https://github.com/MetaBorgCube/gazebo.

3

https://github.com/MetaBorgCube/gazebo

Chapter 2

Pipeline Summarized

This chapter covers the entire Gazebo compiler pipeline from start to end. As we almost
exclusively rely on Spoofax and its meta-DSLs, a brief introduction will be given for starters.
We only cover the parts of Spoofax that are relevant for Gazebo, so this is by no means a
definitive guide. Additionally, for those new to the field of compiler construction, we explain
the relevant areas on a high level.

Note that this chapter covers the Gazebo ‘core pipeline’, which is only readily usable from
within the Eclipse integrated development environment (IDE). In appendix B, we cover the
final big picture, of which the design described in this chapter is a part.

2.1 A Brief Intro to Spoofax and Compiler Construction
The Spoofax Language Workbench, commonly referred to as Spoofax, is “a platform for devel-
oping textual (domain-specific) programming languages” (Spoofax Team 2021). In other
words, Spoofax is a complete toolchain for developing programming languages. Its reference
manual can be found at https://www.spoofax.dev/. Visser (2021) published an excellent
writeup on the history of Spoofax, which we recommend for more background information.

Projects using Spoofax usually model the conventional compiler pipeline, which comes
down to the following: parsing, static analysis and transformations. It has to be noted that
practical compilers do not necessarily follow these stages all that strictly. For many reasons,
not limited to bad historic ones, they may be constructed differently.

A slightly different common perspective on the compilation stages is a more strictly pipe-
lined variant. In this model, a ‘front-end’ handles tasks related to the surface language, and
converts it into some intermediate representation (IR). This, in turn, passes through one or
more ‘middle-ends’, which optimize the IR. Finally, a ‘back-end’ is selected, depending on
the configuration, which emits the final output, a process called ‘code generation’.

Parsing First, the source files are read and parsed. Parsing is the art of converting the tex-
tual form of a program, which is the source file, into a data structure that the compiler itself
can easily work with.

The kind of information the parser outputs, depends on the particular implementation.
In the case of Spoofax Core, we get an abstract syntax tree (AST). Other styles of parsers may
emit a richer data structure, which contains lay-out information, such as a concrete syntax
tree. The output from the parser forms the basis for the rest of the compiler pipeline.

Static Analysis The next typical major stage is ‘static analysis’, a very broad term for dif-
ferent analyses run on an AST without executing the program. Compilers perform static
analysis to reject programs that cannot be executed.

5

https://www.spoofax.dev/

2. PIPELINE SUMMARIZED

Typical tasks range from simple type checking, to more complex type inference, import
analysis, symbol origin location resolution (name binding), or termination checking. For the
purposes of Gazebo, we perform type checking and name binding.

Spoofax offers Statix as the go-to solution for implementing this kind of static analysis.
In fact, we do not even have to implement the analysis manually. Statix is a DSL in which we
merely have to formalize the specification of our type system. This gives us a type checker
almost for free.

Transformation In the last stage, transformations are applied. Similar to static analysis,
transformation is an umbrella term for many different actions. Prominent transformation
applications are desugaring, optimization and code generation. In practice, compilers often
have many more (different) transformation steps, that are not as clearly defined as these
three. In Spoofax, transformations are conventionally written in Stratego, a meta-DSL for
program transformations.

Desugaring is the transformation of an initial program’s AST (derived from what the
programmer writes) into a more simplified syntax. The reason for this is that, usually, a lan-
guage contains some ‘syntactic sugar’, which is where the name of this transformation comes
from. Syntactic sugar is syntax that is useful for a programmer, but does not correspond to
a concrete language feature. The desugaring transformation therefore normally transforms
the input AST to a simpler subset of the grammar of the surface language, which is easier to
work with.

Similarly, in optimization the transformation restructures the AST into a way that is likely
more efficient. Generally, it cannot be predicted exactly how to execute any program in the
most efficient way. Optimization transformations are therefore usually said to be a heuristic.

Code generation does, in contrast, transform to a different syntax. Depending on the use-
case, this can be directly to a string, written to a file, or another tree-based representation
of the target language. Usually, code generation is the last step in a compiler: the generated
code is the end-goal of a compiler.

The beautiful thing of Spoofax is that these steps we just described are not fixed. Instead,
Spoofax has been designed with modularity in mind: each stage is independently replace-
able with a complete different implementation. Similarly, introducing new stages should be
similarly straightforward.

2.2 Schematic Overview
Gazebo’s compilation pipeline is composed of several stages. The components that make up
these stages are listed in table 2.1, where the meta-DSLs that each relies on are indicated.
Note that three different kinds of components can be clustered. First, the ‘pure’ language
projects (lang.*), which are primarily used to define syntax and static semantics. Secondly,
the extension projects (ext.*), forming the connection between two syntaxes, by means of
Stratego strategies. Finally, str-common, which is a Stratego-only project, providing reusable
strategies on top of the regular Stratego standard library, used by all extension projects. We
collected the strategies in this package over the course of the project, mainly to avoid code
duplication.

All these components and their interdependencies are visualized in figure 2.2. This is still
a simplification compared to reality, but it gives a good overview, without worrying about
the details. Note that it capturesmore details than described above, whichwewill now cover
step-by-step.

We start at the lang.gazebo component, which is the main component of Gazebo. Here,
the input files are parsed into an AST by JSGLR, the Java implementation of the scannerless

6

2.2. Schematic Overview

Component SDF3 Statix Stratego ESV
lang.gazebo • • • •
lang.gazebo-core • •
lang.llmc • •
ext.gzb2gzbc API • •
ext.gzbc2llmc • •
ext.llmc2mcje • •
str-common •

Table 2.1: Explicit usage of meta-DSLs by the different components of Gazebo

ext.gzbc2llmcext.gzb2gzbc

lang.gazebo

parse

analyze

SDF parse table

Statix specification

desugar

transform

GZBC

desugar

transform

ext.llmc2mcje

LLMC

desugar

transform

assemble

MC fn.
Statix API

JSGLR

Statix Solver

str-common

lib.std.mcje.gzb

Statix library

Figure 2.2: High-level schematic overview of the Gazebo compilation pipeline in Spoofax

generalized LR (SGLR) algorithm (Visser 1997). JSGLR relies on parse tables, which are
generated by SDF3. This way, the parser is fully independent of both the language that it is
parsing and the framework used to formalize the syntax.

Next, by leveraging the Statix solver, we perform static analysis on the AST, annotating
it with relevant extracted information along the way. Similar to JSGLR, Statix relies on a
pre-packaged specification of the type system in the form of constraints. In addition, we
provide the solver with a pre-analyzed library package (the ‘Statix library’) of our standard
library to reduce analysis time (see appendix C). The static analysis mainly consists of type
checking, such as checking that all variables are declared when used, and that all types are
well-formed. Additionally, we annotate the AST with some meta-data, such as the derived
type information or fully expanded references. Indirectly, this information is used by ESV to
support control-click navigation of the source code in the editor.

The analyzed and annotatedAST can nowbe processed by the extension projects, to trans-
form it into the target language. All three transformation projects are implemented in Strat-

7

2. PIPELINE SUMMARIZED

ego and depend on ESV to add menu items to the editor1, used to run the transformations
manually. Only ext.gzb2gzbc, which transforms GZB to GZBC, has an extra dependency,
the Statix API, to extract information from the annotated AST.

The basis for each transformation project is a two-step process, namely desugaring fol-
lowed by the ‘real’ transformation. The desugaring step takes the input AST and simplifies
is, whereas the latter takes that simplified AST and transforms it into the target language.
From project to project, these transformations differ greatly, which is why we cannot possi-
bly cover everything in this report. Instead, section 3.3 covers the basics.

The target AST of each transformation is written to disk, and can be used as input for
the next transformation. Normally, the output would be pretty-printed and consequently
parsed, but we skip over this step for performance reasons, and instead only serialize, and
in turn deserialize, the AST (see section B.5).

The last transformation stage, ext.llmc2mcje, contains an extra step, which is to assemble
the internally used assembly format into the final target format: an MCFunction file. This
is the text format that is finally usable by the game. We only have to perform some small
organizational tasks, such as packaging up all these files into a ZIP archive with a structure
that Minecraft accepts.

1Technically, ESV only serves as a configuration source for the action facet, which reads directives from the
ESV source to determine which menu items to provide to the editor and which strategy to execute when the
associated action is to be performed.

8

Chapter 3

Implementation Key Aspects

In order to get an idea of how Gazebo works and is implemented in practice, we will discuss
some key aspects related to that in this chapter. We will take a look from four different
aspects.

To start, we cover the high-level design of the surface language, mostly from a syntax-
perspective, while also discussing the relevancy of DSL-typical features. Next, we outline
the ideas behind the type system used. Then, in order to get a better understanding of how
the internals of the language work together as a whole transformation pipeline, we discuss
that particular architecture. Finally, we summarize how the stand-alone compiler was con-
structed from all separate parts.

3.1 High-Level Language Design and Features
Even though Gazebo composes of several languages internally, there is only one syntax that
a programmer needs to know. We refer to this as the surface language. Where relevant in
section 3.3, we will discuss the internal languages in more detail.

For brevity sake, we will not discuss all features, as there are too many. Instead, we will
focus on the features and ideas which are most interesting from a DSL-design perspective.
For the full overview of surface language features, see appendix A.

3.1.1 Modularity with Functions
One of the most important features that Minecraft misses, is proper functions. Although a
community standard for interoperability has been proposed (Arcensoth 2020), there is no na-
tive way. Gazebo does provide functions similar to other high-level languages, including full
support for argument passing, return values, and recursion. We achieve this by implement-
ing a true call stack, which is cumbersome to use manually as it requires a lot of bookkeeping
because it is not natively available.

These functions can call each other, not only from the same source file, but acrossmultiple
files. We achieve this by providing a module system, which allows (selectively) importing
functions from other modules.

As it is a good practice to keep functions small and focused, we allow for very short
function notations. The shortest functions can be defined in a single line, without any braces.
For convenience, these short functions can be written in statement-form or expression-form,
depending on the operator used. The former is used for short functions that do not return
anything, but instead perform some side-effect, while the latter is used for short functions
that return a value.

We give some examples in listing 3.1, showing functions and globals being used across
multiple files which correspond to modules.

9

3. IMPLEMENTATION KEY ASPECTS

/// file: main.gzb
from my_mod use step,

counter as cnt // local import renaming is supported too
func increment => cnt += step(cnt) // short function in statement-form
/// file: my_mod.gzb
from text use say // resolves to the standard library
counter := 0
func step -> Int = 3 // short function in expression-form
#tick func my_loop // registering in tag #minecraft:tick causes the function
{ // ... to be called every game tick (20 times per second)
main~increment() // use-statement not necessary if a relative path is used
say_if_even(counter, "Counter is even")

}
func say_if_even(v Int, msg String)
{
if v % 2 == 0
{
say(msg)

}
}

Listing 3.1: Functions and globals with modularity

3.1.2 Global Variables
Similarly to how functions can be declared in a module and referenced from others, we also
allow this for variables. Those which are put at the top-level of a module thus become global
variables, which can be imported from elsewhere.

3.1.3 Selectors and Aliases with First-Class Data Access
Selectors are a very powerful core feature ofMinecraft, being themechanism to query entities
in the world. Their usage, however, is relatively cumbersome, especially when they are used
in non-trivial ways with filter constraints.

Although the game offers a handful of built-in selectors, it is often necessary to specify
queries further with these constraints. In situations where such a query, or slight variations
thereof, are done often and in multiple places, it is not desireable to have to write the same
query over and over again. Not only is this error-prone, but is also degrades readability.

This is why we offer selector aliases, a way of defining a reusable selector that already
applies some filter constraints. These aliases may then be used similarly to how one of the
built-in selectors would be used.

Entities queried with selectors are always used to perform some action on. Some of these
actions are related to data access, such as retrieving or storing some entity data. In plain
Minecraft, there are dedicated commands to achieve this. In Gazebo however, we make it
possible to use selectors as proper L-values, allowing relatively concise data access expres-
sions. An example of this can be found in listing 3.2, including a demonstration of the selector
alias feature.

3.1.4 Easier Control Flow
Strictly speaking, Minecraft offers no control flow. Instead, it offers one commandwhich can
conditionally execute another command. Usually, the chained command would invoke an-

10

3.2. Type System

alias @MyCreeper = @e[type == $creeper, is "super_secret_tag"]
func configure_my_creepers
{
as @MyCreeper
{
@s.ExplosionRadius = 100 // fully type-safe entity data operation
// ^^^^^^^^^^^^^^^--- refers to a key in the entity definition
// which is inferred via the contextual selector @s
// which in turn is known to point to entities
// of instance $<minecraft:entity>minecraft:creeper
@s.NonExisting = "test" // error: key "NonExisting" does not exist

}
// double the explosion radius for two random entities
as @MyCreeper[sort = "random", limit = 2] =>
@s.ExplosionRadius *= 2 // @s refers to the entity of the current context,

} // as the body block is executed for each match
Listing 3.2: Selectors and aliases with first-class type-safe data access

other MCFunction, but the body of that inherently must reside in a separate file. To improve
on this situation, we offer proper control flow statements, such as if-else branching, loops
and case-match statements. All of these are demonstrated in listing 3.3.

3.2 Type System
Generally speaking, Minecraft does not perform any type-checking. It does perform some
basic sanity checks while parsing, but that is everything. If there are any errors, they will
only be detected at runtime, if at all. Although there is no undefined behavior or a way to
crash the game due to these mistakes, it could still result in unexpected behavior.

In Gazebo, all programs are required to adhere to much stricter typing rules. All data
is strongly typed, thus guaranteeing most allowed operations theoretically safe. The type
system follows a structural approach with recursion support, on which we elaborate in the
next section.

The type system defines a set of rules that constrain which operations are allowed on
which data, but also defines how data is related to other data. We define all rules with
Statix, applying the scopes-as-type paradigm (Antwerpen, Bach Poulsen, et al. 2018). This
approach suits our needs well, as we use a structural type system. The reason for this is that
a it is the closest safe way of modelling the actual runtime behavior of Minecraft. The only
constraint that is imposed on us, is that there is no any-type, requiring each possible location
to be typed and initialized with a default value. For the representing syntax, we took some
inspiration from Go.

Although most typing rules are intuitive, there are some features that are worth dis-
cussing in more detail. Before we can do that, we need to give a brief overview of types
that are available.

3.2.1 Type Classes
Table 3.1 lists all available type classes and their corresponding syntax. Additionally, for the
position primitive, the symbol between ` and T has a significant meaning. Depending on
what it is, it means the following:

11

3. IMPLEMENTATION KEY ASPECTS

func example
{
a := 4

if a > 3 => say("a is greater than 3")
else
{
// ... something else

}

for a > 0 => // conditional loop ("while")
a -= 1

for i <- 0..10 => // range-based loop ("for-each", "iterator")
a += i

for => // infinite loop
say("Infinite Power!")

match a
{
0 => say("zero")
1 => say("one")
_ => say("something else")

}
}

Listing 3.3: Conventional control flow in Gazebo

• none: absolute position;

• ~: may contain parts relevant to cartesian coordinates;

• ^: may contain parts relative to facing-direction;

• *: do not care. All of the above are subtypes of this.

An instance of a type of a particular class is either derived ad-hoc from an expression
(and is in fact done so for each expression), or explicitly given as part of a function signature
or type alias in the aforementioned syntax. It is thus not possible to instantiate an empty
variable by only providing its type; every value’s type must be derived from its concrete
value. Table 3.2 lists some examples per type class and their exact derivation. Still, if it
is desired to self-enforce a particular type of a variable, it is possible to do so with the ::
symbol, which plays an important role in the language.

3.2.2 Type-Ascribed Construction (::)
As we mentioned earlier and have shown in table 3.2, it is not always possible to get a value
of a particular type without contextualizing the expression. This missing context can be
provided by the typed-ascribed construction symbol (::), which can be used create instances
of three different type classes in two different ways.

The :: symbol, signifying a type ascription to an expression, is placed in between a type
and and a construction expression. The type can be any valid type, but the syntax of the

12

3.2. Type System

Class Representation Remark
Alphanumeric
primitive

String, Bool, Long, Int, Short,
Byte, Double, Float

Position
primitive

`T, `~T, `^T, `*T T is normally Int or Float.

Resource registry $<namespace:path~to~registry>

Function tag #

Unconstrained
selector

@

Array and list [T;], [T] All operations are equally valid
on both arrays and lists, but in
general they are not interchange-
able.

Enum enum {A, B},
enum T {A=..., B=...}

Without T provided, Int is
assumed and values are auto-
numbered.

Interface /
compound

interface {key1 T1 ...},
interface : A, B, ... {...}

Overlapping composed mem-
bers’ types are merged by
intersection (L.U.B.).

Table 3.1: Available type classes and their syntactical representation

Class Expression Derived Type
Alphanumeric
primitive

.5f, "Hello" Float, String

Position
primitive

`(1 0 ~1), `(^ ^-.3 1) `~Int, `^Double

Resource registry $stone, $<item>stone, $dolphin error—ambiguous,
$<minecraft:item>,
$<minecraft:entity>

Function tag #minecraft:tick, #:my_tag #

Unconstrained
selector

@e[level > 5, is "tagged"], @s @

Array and list [; "Hi"], [1, 2.3] [String;], [Double]
Enum cannot be instantiated ad-hoc with-

out a type ascription (::)
Interface /
compound

{a: [1], "b c": 2} interface {"a" [Int] "b c" Int}

Table 3.2: Example expressions for each type class and their derived types

13

3. IMPLEMENTATION KEY ASPECTS

type MyEnum enum { A, B }
func my_enum_equal(p, q MyEnum) -> Bool = p == q
func caller
{
b := MyEnum::B
my_enum_equal(::A, b)
// ^^^----- inferred to be MyEnum::A,
// because my_enum_equal expects a MyEnum

}
func local_enum
{
p := enum{X,Y}::X
p = ::Y //--^ bound to locally defined enum key, with click-through support
// ^^^----- inferred to be <anonymous_enum>::Y,
// because `p' is of type <anonymous_enum>
match p
{
::X => say("X")
::Y => say("Y")
::Z => say("Z") // error: key "Z" does not exist on enum

}
}

Listing 3.4: Constructing and using enums

right-hand side expression is constrained. If no left-hand side type is provided, the ascription
works as if the type that is expected at the current position is used. The benefit of this will
become clear in the examples.

The first type classes that can be constructed, are arrays, lists and interfaces. Support for
these classes is necessary in order to propagate the type context to subexpressions that may
be used in list or arraymembers, or in values of interfacemembers. For interfaces specifically,
this is also a way of moving errors closer to the offending location, as the compiler can now
checkwhether some keys aremissing or superfluouswithin the interface, instead of only after
a full type has been derived.

The other other possible type class to construct is the enum class. To construct an enum
instance, the right hand side of the ascription is just the name of the enum member. With
this, it is also possible to use a nameless scoped enum. Both use cases are demonstrated in
listing 3.4.

The third and final use-case for the type ascription is to construct arrays, lists or interfaces
with default (empty) values. This is possible because each type has a determined default
value. Using the ascription like this, is also the only way to pre-allocate slots in an array or
list. The operation is demonstrated in listing 3.5. Note that for arrays and lists, the number
of slots has to be provided, whereas for interfaces, nothing can be provided.

3.3 Transformation Architecture
As we have seen in chapter 2, the compiler internally deals with a number of different in-
termediate languages to get the job done. In this section, we explain some of the reasoning
behind the design of these languages and their purpose. Where relevant, we mention more
details about the transformations that are responsible for transforming the input to the out-
put form.

14

3.3. Transformation Architecture

type MyStruct interface { a Double }
func default_array_and_list
{
default_array := [String;]::(4) // value: [String; "", "", "", ""]
default_array = ::(2) // value: [String; "", ""]
default_list := [MyStruct]::(2) // value: [{"a":0.0}, {"a":0.0}]

}
func default_interfaces
{
dynamic_instance := { a: 5 } // inferred to have type interface { a Int }
dynamic_instance = ::() // reset to default value: { "a": 0 }
dynamic_instance = ::{} // error: missing value for key "a"

}
Listing 3.5: Constructing default values for arrays, lists and interfaces

The implementations of all the transformations described in the following subsections
can be found in the source code repository1 in the following respective directories:
ext/ext.{gzb2gzbc,gzbc2llmc,llmc2mcje}/trans/. Some common transformation strategies
can be found under str-common/trans/.

3.3.1 Gazebo Main to Gazebo Core
The surface language, as discussed in the previous section, contains a relatively high amount
of syntactic sugar. The very first step is to desugar this. Although desugaring can nor-
mally operate fully within one syntax, it is beneficial to have a dedicated core language to
desugar to. This enforces a bit more simplicity and regularity in the format of the desug-
ared code, which makes it easier to process further on, without the possibility of confusing
non-desugared code with desugared code.

The step from GZB to GZBC is relatively small for most parts. Where the majority of
transformations are spent on, is extracting type information that was inferred during the
static analysis phase in Statix. We decided to make GZBC a language of which the files are
fully self-contained. There are two reasons for this. First, it makes it theoretically trivial to
process files in parallel. Second, it requires no static analysis to be performed, because all
type and name binding information is either present in the file, or can be trivially inferred.
Not wanting to perform static analysis is especially relevant with regards to the current per-
formance characteristics of Statix.

3.3.2 Gazebo Core to Low-Level Minecraft Commands
The GZBC AST received as input in this transformation stage is still relatively high-level and
feature-rich. LLMC on the other hand, is supposed to be a very low-level abstraction of the
Minecraft’s commands, as the name suggests.

The first step in this transformation is to once again apply desugar transformations. Al-
though some of these could have been applied in the previous stage already, the desugar
transformations in this stage are more lossy in terms of context information and already
geared towards the LLMC format. There are three major parts which are desugared in this
stage: for-in loops to conditional loops, match statements to if-else chains and selector mixin
lifting and reduction. For the last part, we given an example in listing 3.6.

1https://github.com/MetaBorgCube/gazebo

15

https://github.com/MetaBorgCube/gazebo

3. IMPLEMENTATION KEY ASPECTS

// Gazebo Main
alias @First = @e[is "example"]
alias @Second = @First[level > 5+6]
const my_sel := @Second
// --> Gazebo Core (aliases transformed to mixins)
mixin First [tag = "example"]
mixin Second [level > 5I + 6I]
const my_sel : @ = @(e, First, Second, [], __UNK)
// --> Gazebo Core (mixins desugared, non-literal expressions lifted)
const _mixin$Second$level0 : __UNK = 5 + 6
typeof :(ns, name _mixin$Second$level0) = __UNK
const my_sel : @ = @(e, [tag = "example", level > _mixin$Second$level0], __UNK)

Listing 3.6: Desugaring of selectors and mixins in GZBC

The transformations leading up to the output in LLMC can now be started. At the top-
level of an GZBC file, there are only three types of items remaining: function definitions,
global variable definitions, and accompanying global variable type declarations. After pass-
ing over the type-of declarations and recording them, there are only two remaining.

All globals have to be initialized at some point, as there is no native concept of globals.
Although global variables are properly scoped by the module name, they do not exist unless
explicitly created. After initialization, it is sufficient to just know about the address of the
variable. For this reason, global variable definitions can also be translated into a function
definition, namely their initializer. This is a special function that cannot be called externally,
but is automatically called during initialization, by registering it to the tag #minecraft:init.

Now we are left with just functions. These in turn exist of statements, containing expres-
sions or other statement blocks, possibly executed conditionally. At this point, the design of
LLMC dictates the remaining transformations: it only knows about functions, each of which
lives in a separate file.

To allow for simplified processing in the next stage, we decided to explicitly include the
concept of basic blocks, blocks of continuous statements, in LLMC. To allow control flow
between basic blocks, we introduce a meta-block construct, called a flow group existing of
one or more flow blocks. A flow block is a condition that determines whether an encapsulated
block is executed. This body block may in turn be another flow group, or just a basic block.

Note that basic blocks cannot contain anything else than statements. As mentioned ear-
lier, this enforces a very strict view of what is executed together and what is not. Also note
that a flow block that executes its encapsulated block will always return and execute the next
flow block. This is analogous to how Minecraft executes nested blocks, causing the logic
for, for example, if-else statements to be implemented in the transformation from GZBC to
LLMC.

We constrain ourselves even further by requiring all statements in a basic block to be in
the form d Ð a or d Ð[oā, where d is a destination (or L-value), a is an argument (or R-
value), and o is an opcode. The first case is a trivial reassignment, while the value stored in
the destination for the second case depends on the combination of operator and arguments.
There are only a few opcodes necessary to implement the entire feature set of Gazebo: arith-
metic (add, sub, …), element counting (count), data access (find), data deletion (del), empty
data construction (new) and function invocation (ivk). If necessary, this format can trivially
be converted into a static single assignment (SSA) form, which can be helpful for further
optimizations, although it would require the addition of the Φ function as an opcode.

Arguments in LLMC are the result from transforming GZBC expressions. Most expres-
sions correspond cleanly with one or more LLMC arguments, but some require a more com-

16

3.3. Transformation Architecture

/// Gazebo Main
func say_list(items [String]) => for s <- items => say(s)
/// Gazebo Core
func say_list(val items [String]) -> __VOID
{
iterate items as s {
discard :(minecraft, text say)(__VOID; text: String = s);

};
}
/// Gazebo Core (desugared)
func say_list(val items [String]) -> __VOID
{
var flag : Byte = 1B;
var subj : [String] = items;
loop flag {
if __count(subj) (Int)>(Int) 0I {
val curr : String = subj.[0I];
__del subj.[0I];
val s : String = subj;
discard :(minecraft, text say)(__VOID; text: String = s);

} else {
flag = 0B;

};
};

}
Listing 3.7: Transformation of a function definition from GZB to GZBC, continued in listing
3.8 to LLMC

plex treatment, such as lifting computations into several operational assignment statements.
Note that logic operations are not implemented as opcodes; instead they are LLMC argu-
ments, because they can also appear in the condition of a flow block.

As we cannot discuss all transformations, we show a reduced example of a function def-
inition in GZBC and its resulting LLMC representation, in listings 3.7 and 3.8.

3.3.3 Low-Level Minecraft Commands to MCFunction Format
Although LLMCwas designed to closely resemble the MCFunction format, this last transfor-
mation phase is not trivial. The majority of the transformations are concerned with figuring
out how data is actually stored, moved around, manipulated and persisted.

For the emission of commands, we rely heavily on Stratego’s dynamic rules extension (Bra-
venboer, van Dam, et al. 2006). In contrast to the previous phases, the actual order of exe-
cution is determined here. The way we use dynamic rules requires the use of regular collec-
tion points, where auxiliary commands are wrapped into a single atomic set of commands,
called units. This leads to a lot of nesting, as each of these collection points conceptually
corresponds to the smallest scope that exists, and every wrapping scope thereof.

As this behavior is undesirable, we abstract the emission of commands into yet another
small assembly language. With this, the transformations from LLMC can be kept at a slightly
higher level, as the assembly format only encapsulates the bare minimum of MCFunction
structures.

The final step is to pass the assembly tree through a tiny optimization pass, which re-

17

3. IMPLEMENTATION KEY ASPECTS

/// Low-Level Minecraft Commands
function example:sandbox/say_list
// declarations with associated type, used to determine the stack frame layout
sign items l[s] // signature declaration, the remaining are locals
local flag iB local subj l[s] local $if_not_taken0 iB local $count0 iI
local curr s local $find0 s local s s
body
{ // unconditional flow block
flag <- 1B
subj <- items

}
loop flag = 1B {
{ $count0 <- count subj }
if $count0 > 0I {
$if_not_taken <- 0B
$find0 <- find subj '[0]'
curr <- $find0
subj, '[0]' <-| del
s <- subj
_ <- ivk(?) minecraft:text/say (text s)@s

}
if $if_not_taken0 = 1B {
flag <- 0B

}
}

Listing 3.8: Transforming a function definition from listing 3.7 in GZBC to LLMC, demon-
strating how flow control in LLMC becomes tedious

moves most of the unnecessary unit nesting, before assembling every remaining unit into a
MCFunction content string.

The outputted content string is prefixed with some metadata in a comment string, in the
Interoperable Module Protocol (IMP) format. IMP is a collection of community-proposed
standards for authoring data packs (Arcensoth 2020). Catering to the community, we try to
stay compliant to this standard.

3.4 Stand-Alone Compiler

Knowing how a program written in GZB is to be transformed all the way down to several
MCFunctions, we can start tying things together. An end-user, aGazeboprogrammer, should
be able to make use of our compiler just as easily as they would use any other. Practically all
compilers are distributed to these users as either a stand-alone executable or a library that
can be imported. Usually the former is a convenience CLI wrapper around the latter, as is be
the case for us.

Although there are many interesting aspects of our stand-alone implementation, we can-
not go into all detail here. For a deeper dive into the implementation, including some draw-
ings and code examples, see appendix B.

18

3.4. Stand-Alone Compiler

3.4.1 Goal
Although Spoofax is extremely feature-rich, it does not provide all features out-of-the-box in
a single package that one might need to implement a fully stand-alone CLI such as Gazebo
stand-alone (GZBS). Sunshine2 is one of the efforts of the Spoofax Team to provide CLI sup-
port. Unfortunately, it is not activelymaintained norwell-documented, and only implements
a basic feature set. On the other hand, the Spoofax Core API is very extensive. Sunshine can
be regarded as more of a tool for very specific use-cases of the API instead. We will discuss
this situation in more detail in section 5.2.2.

End-users of a programming language cannot be expected to program inside the Spoofax
Eclipse environment, even though that may be the easiest way to get the full experience. This
is a full-blown IDE which is not only resource-intensive, but also may be too complex and
too steep of a learning curve for some users, as not everybody can be expected to be familiar
with Eclipse. What is expected by end-users is that the language at least provides a CLI; IDE
support is generally regarded as a quality of life feature not strictly necessary. In order to
fulfill this expectation, GZBS was developed.

With the modularity spirit of Spoofax in mind, a design goal of GZBS was to achieve
modularity, which is detailed in the next section. It has practically already proven useful. The
heavy-lifting of the compiler is done in a reusable library component, which has been used
in practice to construct a graphical user-interface (GUI) for demonstration purposes at the
Honours Symposium, a poster-presentation session, held inMarch 2022. This particular GUI
was created in just a few hours of quick work, only relying on JavaFX as other dependency.

The other strong reason for implementing this sub-project was to run tasks alongside
Spoofax which are not part of a typical Spoofax pipeline. Packaging all outputs into a final
ZIP archive, with appropriatemeta-files, is the primary use-case for this. Another one is gath-
ering Statix Libraries (StxLibs) for standard library packaging, as is described in appendix
C.

3.4.2 Languages, Build System & Frameworks
All code ofGZBS iswritten in theKotlin3 programming language. TheGradle build system is
used to produce Java Archives (JARs) and corresponding executables. The choice for Kotlin
was by no means necessary, but demonstrates that the Spoofax Core API is perfectly usable
from other Java Virtual Machine (JVM) languages as well. Using Gradle, instead of Maven,
is a logical consequence of choosing Kotlin, as it integrates most natively.

Other than Spoofax Core there is only one other direct and one indirect dependency that
is used actively: Picocli and Guice. Picocli is a helper library for command-line applications.
Guice is a dependency injection framework, already used by Spoofax Core, requiring GZBS
to use it as well.

3.4.3 Wiring Things Up
Spoofax projects are packaged into .spoofax-language files, conventionally called language
archives. Although the name suggests that such a package only serves for ‘real’ languages,
it is perfectly possible to only use a language archive for general utilities, or in this case, for
transformations between the different intermediate languages.

In chapter 2 the complete pipeline of the compiler was given. Each part of the compiler
seen from that perspective corresponds to one language archive. When used from within
the Eclipse environment, some actions such as static analysis are performed automatically,
whereas others need to be invoked manually by the user via the menu.

2https://github.com/metaborg/spoofax-sunshine
3https://kotlinlang.org/

19

https://github.com/metaborg/spoofax-sunshine
https://kotlinlang.org/

3. IMPLEMENTATION KEY ASPECTS

Wiring up these language archives and all corresponding actions between them is the
task of GZBS, similarly to how Sunshine did it. Fortunately, the heavy-lifting is implemented
by Spoofax Core’s build system. However, it still needs to be informed and configured, for
example about where these language archives reside, and how to load them.

20

Chapter 4

Project Evaluation

The Honours Programme for Bachelor students of the Computer Science and Engineering
programme here at Delft University of Technology aims to provide students ways of broad-
ening their knowledge and skills. Not only in the field of Computer Science, but also inter-
disciplinary, for which several courses were offered and taken.

This report only covers the faculty part of the programme, which is a scientific project in
the broadest sense. Normally, we would have to write a scientific article of four to six pages,
reporting on our findings of thework. However, specifically applying to our project, wewere
allowed to write a report instead, “detailing what [we] have done and learned”.

Regarding to what has been done, that is the main body of the report and its appendices,
but regarding towhatwe have learnt, wewill nowdiscuss that now inmore detail. Following
that, we will put the project as a whole into more context, discussing some miscellaneous
important project-wide concerns.

A formal evaluation of the project and our final work has been done by our supervisors,
but is not covered in this document.

4.1 Learning Points
The most obvious and important learning point is the fact that I have learned a lot about
how compilers actually work. Although this experience occurred mostly within the bounds
of Spoofax, I still think it has been a very valuable experience, broadening my knowledge
significantly.

From working directly with the Spoofax Core API, over the course of the entire project, I
have also picked up a lot about Spoofax’s internal design. Even though I already have several
years of professional software development experience, I had never worked with a project
of this size and complexity before. Again, from an insight-broadening perspective, this has
been very valuable.

During the project, but especially in the beginning and at some point towards the end,
I participated in a significant fraction of Spoofax Progress meetings. Similar to the Slack
channel, these meetings were a great way to get to know the Spoofax team. Although I
have not workedwith anybody together intensively or implemented new features in Spoofax
itself, these meetings and the Slack channel both have been good resources to knowwhowas
working on what and what the (short-term) roadmap looked like.

Similarly, in the very beginning of the project, even before any serious implementation
work had been done, I have read a lot of the Spoofax documentation and backing scientific
publications. Simply diving right into the matter has been a good way for me to gain a
better understanding of Spoofax, its history, its design and implementation specifics. Of
course, it was not relevant for me to know every detail about the different meta-DSLs and
their implementation, but it was very useful to know –in broad terms– what was possible

21

4. PROJECT EVALUATION

and what was not, what they were intended for and what they were not, giving me a solid
basis to start working on the project.

4.2 State of Completion
Unfortunately we were not able to bring the project to a full state of completion. In this
report, we have discussed many features that are implemented and working to some degree,
but thereweremanymore features that we initially planned on. However, in hindsight it was
too ambitious from the start. With the unfortunate passing of Eelco, the project also came to
a halt for a significant period of time, after which it was difficult to pick up the project again.
Still, were this to not have happened, we would not have been able to implement all features
anyway.

The current state of the project is that it is usable to some degree. From start to finish,
the full compilation pipeline can be run, with some inputs producing actually usable out-
puts which can be loaded into and executed in the game. With the help of this document to
convey some of the ideas, and the code itself to showcase an implementation with several
examples to illustrate concepts even further, the project is in a state where it could be used
as a basis for further development. Although the idea of compiling to a game engine may
not be particularly useful in practice, the project as a whole serves as a possible real-world
example of how to use Spoofax in a significantly more elaborate way than examples in the
documentation show.

4.3 Minecraft Support Considerations
Minecraft can be found on may different platforms, but not all features are shared among
them. The game was initially launched exclusively for the Java platform, but soon Mojang
released Minecraft: Pocket Edition (MCPE). In 2017, a major rebranding took place, causing
MCPE to now be known asMinecraft: Bedrock Edition (MCBE). The ‘original’ Java edition be-
came known as Minecraft: Java Edition (MCJE), to which we have been referring to through-
out this report.

These two editions of the game are developed by separate teams within Mojang. Al-
though the feature disparity has been largely resolved over the years, implementation de-
tails still differ significantly. We do not expect this to change anytime soon, as there does not
appear to be any reason for doing so.

Hence, we had to make the choice of which edition of the game to support. There was
not much of a choice, as our personal experience was almost exclusively with Java Edition,
and not so much in the Bedrock Edition. Another reason is simply that the technical commu-
nity aroundMCJE is much more active and developed. For example, tooling, not necessarily
related to programming languages that target the command system, iswell-established: com-
munity projects such as Data Pack Helper Plus (SPGoding 2019), an extension for VS Code or
Beet (Berlier 2020), a data pack assembler written in Python, are widely used by the ‘classic’
developers.

22

Chapter 5

A Review of Spoofax 2

Finally, in this last chapter, we will discuss our experience working with Spoofax 2. All
suggestions or comments we make have been checked with the responsible authors before
publication, whether or not they are valid and grounded. The order of sections, each dedi-
cated to a different area, is relevant in the sense that we believe the first subsections are the
most important. We only cover topics that were related to, or that were noticed during, the
development of Gazebo. Moreover, some problems described here are in fact already solved
in Spoofax 3.

5.1 Architectural Limitations
Spoofax 3 is on its way, and for good reason. The stability of Spoofax 2 has served us well in
the past, and will probably continue to do so in the following years, especially in enterprise
environments. However, there are some limitations thatwe currently either have to dealwith,
be it using a workaround or simply not using it at all. Additionally, both for performance
reasons and pure architecture sake, we have some comments.

5.1.1 Multi-File Transformation
Stratego, the meta-DSL used to write AST-level transformation in, is designed to work with
one input and one input only. On several occasions, we have noticed that sharing state be-
tween several files is not trivial this way. Statix, for example, does support multi-file analysis.
However, it is not implemented in a reusable way, but built for its very specific use-case. It
has already resulted in some confusing bugs1.

Whole-program optimizations are thus not possible in normal Stratego. Even with man-
ual workarounds, different from how Statix has actually solved it, are suboptimal. This is
very unfortunate, as Hendrik van Antwerpen stated: “There are no true multi-file transfor-
mations. Theywould indeed be very useful, but I expect we have to wait for Spoofax 3 before
we get that.”2

5.1.2 The Central Place of ESV
In several areas, Spoofax Core is seemingly coupled to support editors in general: it consists
of many facets and services, some of which are dedicated to editor support, even though
they may never be used. A language archive’s configuration is largely defined in terms of
its ESV specification, which is intentional (Kats, Kalleberg, and Visser 2010). The primary

1See, for example, https://github.com/metaborg/nabl/issues/94
2https://slde.slack.com/archives/C7254SF60/p1612776974137000?thread_ts=1612769297.136500&cid=

C7254SF60

23

https://github.com/metaborg/nabl/issues/94
https://slde.slack.com/archives/C7254SF60/p1612776974137000?thread_ts=1612769297.136500&cid=C7254SF60
https://slde.slack.com/archives/C7254SF60/p1612776974137000?thread_ts=1612769297.136500&cid=C7254SF60

5. A REVIEW OF SPOOFAX 2

configuration is a neutral YAML file, while the useful configuration has to be defined in the
ESV file. This, in turn, is parsed in terms of different ‘facets’, which define some particular
(class of) functionality of a language, for example, which action should be run whenever a
file is saved.

Although ESV can be looked at as simply a misnomer for an evolved subsystem, that
should instead be called something more appropriate, such as ‘Spoofax Runtime Configura-
tion Language’, it still is a singular and very centralized part of Spoofax. Due to the static
nature of facets, Spoofax Core contains many which are, arguably, not related to core func-
tionality at all. Ideally, all non-essential facets should be part of separate modules. In turn,
not everything should be defined in ESV format, requiring the language packaging process
to be more flexible as well. Such a design would allow for a much more modular core de-
sign, which is in the spirit of Spoofax. In our case, wewould simply not have to load all facets
and related services for features that are not related to a stand-alone compiler, resulting in a
smaller footprint overall.

The interdependence of some ESV features with non-editor related thingsmanifests itself
in some non-intuitive ways to configure a Spoofax language. The prime example is that all
ESV files must be placed in the editor directory of a language project. This does allow the
usage of separate files, to achieve some modularity. Still, options such as the start symbol of
a language, the file extensions it supports, or configuration of the Stratego runtime do not
make sense to be located here, as the connection with editor services is far-fetched.

5.1.3 Message Reporting
Most meta-DSLs emit some messages via the IMessagePrinter interface, often indirectly.
Statix however in particular adds HTML content to the messages, which cannot be expected
to be understood by all implementations of the interface. Within the Eclipse environment this
is fine, as the GUI elements can be rendered with HTML. For our stand-alone compiler we
needed to implement workarounds to make the messages properly renderable in a terminal.
In general, it appears that the messaging system’s architecture can use some improvement.

The usage ofHTML ismessages is not desired for the above reason, but especially because
it is not a portable format. It may sometimes be desireable to add somemarkup or meta-data
to messages, as this could enrich the user experience. Examples that come to mind are links
to documentation, or the ability to link a piece of the message body to a specific source code
location.

Another likely use case, at least within editor environments, is navigable (stack) traces,
such as those produced by Statix. Currently, the trace is formatted as a fixed string, based on
predetermined depth limits for the stack itself and the relevant context term. In an interactive
environment, it would be much more useful to be able to explore this data interactively, for
example by clicking on a term to expand it.

In any case, how feature-rich the messaging system may be, it must still be possible to
format everything into a fixed string format. This is useful for command-line tools, but also
for logging purposes.

5.1.4 Concurrent Task Execution
Concurrency, in general, is something Spoofax makes no use of. Only Statix’s solver specif-
ically implements a complete actor-based concurrency framework, which is used to paral-
lelize the analysis of multiple files (Antwerpen and Visser 2021). Other parts of the Spoofax
pipeline do not leverage any parallelism. It seems like an important aspect to focus on, as
Spoofax is generally not known for its efficiency.

Even though Antwerpen and Visser (2021) have shown that modern compilers only par-
allelize a small fraction of their work, Spoofax delivers more than a compiler. It performs

24

5.2. Using Spoofax in Stand-Alone Fashion

housekeeping tasks, such as discovering input changes, that would conventionally be man-
aged by a build system, while it also manages tasks that are very compiler-specific. Because
Spoofax is partially a build framework, some tasks ought to be suited for concurrent execu-
tion, while the compiler-internal tasks may also be. Parsing seems to be the most obvious
candidate: there cannot yet be any interdependencies between files. AST transformations in
Stratego operate, as mentioned earlier, on a single AST. Assuming the strategies do not have
any conflicting I/O side-effects, they should be fully parallelizable.

5.2 Using Spoofax in Stand-Alone Fashion
Most users of Spoofax will probably never use the API directly, however we did make exten-
sive use of it in the implementation of GZBS (see appendix B). The comments in this section
originate from our experience using and extending Spoofax Core.

5.2.1 Disk Access
Spoofax projects that use a multi-stage pipeline, write their intermediate results to disk. The
build order is determined by Spoofax, such that the right files are written to disk before the
next stage that depends on them is executed. From the perspective of the next stage, the
outputs of the previous stage are indistinguishable from preexisting files.

In theory, this is great, as it allows for complete separation of concerns. However, the
practical implementation leaves some things to be desired. We mention one optimization in
section B.5, namely to skip intermediate parsing overhead. Another bottleneck may present
itself in the fact that all these files are physicallywritten to disk. For our intents and purposes,
all intermediates could just as well be written to a temporary directorymounted inmemory3.
For some purposes, such as incremental compilation, it might be beneficial to permanently
cache intermediate results.

We have tried to add native transparent support for in-memory files to Spoofax Core, but
this proved to require changes in several areas. Ideally, the strategies that emit intermediate
results are unaware of the fact that they are not writing their result to disk. With the cur-
rent design, this is impossible, as the only way of indicating that a file should be written to a
non-default location is by providing a strategy output location starting with tmp:. Security
concerns aside, this requires changes from the strategy author, and it causes the transforma-
tion result to be placed at a location that is not managed by default, and thus to not scanned
for source files for the next stage. Instead, we need to provide this location explicitly as a
location to scan through the project configuration.

The convention is to put all temporary, generated or intermediate files in the src-gen
directory, relative to the project root. A more transparent approach would map all files in
the src-gen directory to a temporary location in memory, but this is a drastic change and not
easily possible with Apache VFS. 4

5.2.2 Spoofax Sunshine
For testing purposes, Sunshine is a neat tool. We have evaluated its usefulness early on in the
development process, in order to determine whether or not it was necessary to write a new
piece of software around the Spoofax API. Most features that GZBS, our implementation of
a similar tool, supports, are also supported by Sunshine, because they are wrappers around
Spoofax Core.

3Such as /tmp on Linux: https://www.freedesktop.org/software/systemd/man/file-hierarchy.html.
4An actual implementation would likely work with a custom filesystem implementation, which delegates

some directories to an in-memory filesystem and the rest to the default filesystem. Another approach might use
a mechanism similar to Linux’s overlayfs.

25

https://www.freedesktop.org/software/systemd/man/file-hierarchy.html

5. A REVIEW OF SPOOFAX 2

Sunshine is generally a well-designed tool, and easy to use. Although it makes proper
use of OOP principles, it does not allow for the functionality extension that we would have
needed. This is due to the fact that command implementations are not designed to be ex-
tended, as they do not return any value or modify any class-local state. The reason for this
seems to be coupling with derived local and remote classes for usage in the Nailgun frame-
work5. We were especially interested in the instance of ISpoofaxBuildOutput, but this is kept
as a local variable in the BuildCommand class, and never returned.

Furthermore, Sunshine is not open to extension of the build input6, and thus we cannot
modify any flags other than those exposed as command-line options. Part of the build in-
put is logger configuration, which we also wanted to modify with respect to the defaults in
Sunshine, but is also impossible.

At this point, we could either modify Sunshine and upstream the changes, or write a
completely new implementation, without having to risk future impossibilities and need for
upstream patches. As can be read in appendix B, we have actually chosen to implement
it from scratch. The conclusion here is that it would likely be useful if Sunshine would be
slightly more extensible.

5.2.3 Documentation on Internals
Implementing GZBS, based on Sunshine was a bit of a challenge. Although there was some
additional documentation about the API7, this was not complete. Especially when debug-
ging, it was often required to delve into Spoofax’s internals. Personally, that was not much
of a problem, aswewere curious to learn and able to understand it relatively easily. However,
from a broader audience this cannot be expected.

Javadoc comments are placed in some places, but are often not really helpful or simply
redundant. Although no comments are better than redundant comments, in many places
where comments would be useful, there are none actually. Admittedly, this is a problem
that a lot of software suffers from. It is difficult to say how much more documentation is
required for the source code to become significantly easier to understand, but for Spoofax to
gain more widespread adoption, some more focus on industry-grade (lean) software devel-
opment practices might be beneficial.

5Used to run the application as a daemon to speed up repeated execution, because initialization overhead is
only incurred once the server starts.

6The build input (builder) covers a large amount of configuration options, which are consequently passed
as a big single object to the Spoofax builder.

7https://www.metaborg.org/en/latest/source/core/manual/index.html

26

https://www.metaborg.org/en/latest/source/core/manual/index.html

Chapter 6

Conclusion & Future Work

We implemented a prototype of a new programming language targeting the Minecraft com-
mands ecosystem, with the aim of exploring the possibilities of the game’s platform and in
order to evaluate Spoofax as a whole. We have extensively reported on both aspects in this
document, including some more background information in the appendices.

Although this report does not describe the language in all detail, some parts of the lan-
guage that are not mentioned are still missing. Initially the feature set seemed reasonable,
but reality has proven more than once that the smallest features require the most work, as
they interplay with the entirety of the system. Due to the fact that we had never worked
with Spoofax before, and the fact that most people who do work with it have a gradual intro-
duction, it was difficult to estimate the amount of work required for each feature in advance.
Moreover, earlier this year, with Eelco Visser’s passing, work on the project also temporarily
halted. However, in the end, most features were implemented to the extent that we could
report about them.

As we described in chapter 5, not everything was smooth sailing with Spoofax. Even
though the community was very helpful, there were many things that we simply had to
figure out for ourselves. As the project progressed, Spoofax as a whole became slower and
slower, decreasing the work efficiency. We also spent a significant portion of our time on
debugging Spoofax itself (and learning how to do so in the first place), searching for and
reading through documentation, and understanding the workings of the Spoofax API.

We have designed our language as a three-stage pipeline, in which the surface language
(GZB) is transformed and enriched into a core language (GZBC), which in turn is trans-
formed into the LLMC format, which then is compiled into Minecraft commands. In the
end, this turned out to be a reasonable approach, however it was probably not necessary to
have the core language. The overhead of a fully separate language that basically shares all
concepts with the surface language is not worth the benefit of separation of concerns: all en-
richments and simplifications could just as well have been done within the surface language.
The fact that the core language bears all type information in a fully explicit way is also waste-
ful in terms of information passed between stages, as it can add up quickly if more complex
types are used often.

There are several other areas inwhich our language could be improved or extended. First,
we currently do not enforce visibility and mutability modifiers, meaning that everything is
public and mutable. Seconds, the LLMC can be extended with static analysis and optimiza-
tion passes, of which inlining and partial evaluation are critical, as some features rely on
them1. Third, as all features are currently implemented in a relatively straightforward way,
it is likely that it is not efficient. The Minecraft platform is inherently a very inefficient target,

1For example, concatenating strings is not feasible to support at runtime. Similarly, functions that use raw
statements, such as in the standard library, must be fully inlined as it is not possible to interpolate this at runtime.

27

6. CONCLUSION & FUTURE WORK

so optimizations can be critical in determining whether using this language is feasible at all,
hencewe need to benchmark the performance. Fourth, a dependency or librarymanagement
system would be useful to allow a more streamlined experience for users to reuse code.

The language we have implemented, is an imperative language. For most programmers
and the target audience, this is the natural way of thinking about programs, however the
functional paradigm is more interesting from a scientific perspective. All previous related
work has been dedicated to imperative languages too. As such, there appear to never have
been any attempts to implement a functional language targeting theMinecraft platform. The
question remains whether this makes sense, and if it is possible to do so at all.

One of the goals of this project was to evaluate Spoofax and its ecosystem as a whole, from
a programming language designer’s perspective. Having bridged the initial learning curve,
we can say that it is indeed a very powerful tool. Although we have not experienced the full
breadth of all its meta-DSLs, everything that we did use was generally well designed and
useful for its intended purpose.

Specifically Statix has proven itself to be extremely useful. Especially compared to its
predecessor NaBL2, it is still relatively new in the ecosystem. The learning curve is mild, as
the syntax is relatively simple, while there were initially not many examples available.

The other two meta-DSLs that we used, SDF3 and Stratego are also both very powerful.
SDF3 (with JSGLR) was very intuitive to use with almost no learning curve, while Stratego
was by far the most difficult to learn. Even with the help of extensive documentation, papers
and examples, it was initially very difficult to understand the logical flow and interplay of
strategies. However, once we understood all of this, it proved to be a useful tool for imple-
menting our program transformations, especially with the Statix integration.

In the end, it is difficult to say whether Spoofax enabled us to implement our language
faster than we would have been able to otherwise. Although the answer seems to be yes, it is
difficult to quantify. As we had no proper prior experience in compiler construction, there is
little experience to compare to. Having experienced and described that it can sometimes be
a bit rough around the edges, it still feels like a proper tool for the job.

28

Bibliography

Antwerpen, Hendrik van, Casper Bach Poulsen, et al. (Oct. 2018). “Scopes as Types”. In: Proc.
ACM Program. Lang. 2.OOPSLA. DOI: 10.1145/3276484. URL: https://doi-org.tudelft.
idm.oclc.org/10.1145/3276484.

Antwerpen, Hendrik van and Eelco Visser (2021). “Scope States: Guarding Safety of Name
Resolution in Parallel Type Checkers”. English. In: DOI: 10.4230/LIPIcs.ECOOP.2021.1.
URL: http://resolver.tudelft.nl/uuid:ccd9fcfc-6cf5-4447-b8b4-b862ce1b4483.

Arcensoth (2018). Version-controlled history of Minecraft’s generated data. URL: https://github.
com/Arcensoth/mcdata (visited on 05/21/2022).

— (2020). IMP: InteroperableModule Protocol design specification and recommendations forMinecraft
datapacks. URL: https://github.com/Arcensoth/imp-spec (visited on 05/14/2022).

Berlier, Valentin (2020). Beet - The Minecraft pack development kit. URL: https://mcbeet.dev
(visited on 03/13/2022).

— (2021). Mecha - a powerful Minecraft command library. URL: https://github.com/mcbeet/
mecha (visited on 03/13/2022).

Brand, M. G. J. van den et al. (2000). “Efficient annotated terms”. In: Software: Practice and
Experience 30.3, pp. 259–291. DOI: 10.1002/(SICI)1097-024X(200003)30:3<259::AID-
SPE298>3.0.CO;2-Y. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%
291097-024X%28200003%2930%3A3%3C259%3A%3AAID-SPE298%3E3.0.CO%3B2-Y.

Bravenboer, Martin, René de Groot, and Eelco Visser (2006). “MetaBorg in Action: Exam-
ples of Domain-Specific Language Embedding and Assimilation Using Stratego/XT”. In:
LectureNotes in Computer Science 1611-3349. Berlin, Heidelberg : Springer BerlinHeidel-
berg, pp. 297–311. DOI: 10.1007/11877028_10. URL: https://doi.org/10.1007/11877028_
10.

Bravenboer, Martin, Arthur van Dam, et al. (2006). “Program Transformation with Scoped
Dynamic Rewrite Rules”. In: Fundamenta Informaticæ 69. 1-2, pp. 123–178.

Energyxxer (2019). Trident - A programming language for Minecraft data packs. URL: https://
energyxxer.com/trident (visited on 03/19/2022).

Gnembon (2019). Fabric Carpet - a mod for vanilla Minecraft that allows you to take full control
of what matters from a technical perspective of the game. URL: https://github.com/gnembon/
fabric-carpet (visited on 11/26/2022).

Groenewegen, DannyM. et al. (2008). “WebDSL: A Domain-Specific Language for Dynamic
WebApplications”. In:Companion to the 23rd ACMSIGPLANConference on Object-Oriented
Programming Systems Languages and Applications. OOPSLACompanion ’08. Nashville, TN,
USA: Association for Computing Machinery, pp. 779–780. ISBN: 9781605582207. DOI: 10.
1145/1449814.1449858. URL: https://doi.org/10.1145/1449814.1449858.

Gromov, Anton (2014). Redstone Programming Language. URL: https://tossha.com/rpl/.
Haisma, M.A. (author) (2017). Grace in Spoofax. English. URL: http://resolver.tudelft.nl/

uuid:76ab40b5-ccdb-4db1-95ef-db71c01e0c7f.

29

https://doi.org/10.1145/3276484
https://doi-org.tudelft.idm.oclc.org/10.1145/3276484
https://doi-org.tudelft.idm.oclc.org/10.1145/3276484
https://doi.org/10.4230/LIPIcs.ECOOP.2021.1
http://resolver.tudelft.nl/uuid:ccd9fcfc-6cf5-4447-b8b4-b862ce1b4483
https://github.com/Arcensoth/mcdata
https://github.com/Arcensoth/mcdata
https://github.com/Arcensoth/imp-spec
https://mcbeet.dev
https://github.com/mcbeet/mecha
https://github.com/mcbeet/mecha
https://doi.org/10.1002/(SICI)1097-024X(200003)30:3<259::AID-SPE298>3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1097-024X(200003)30:3<259::AID-SPE298>3.0.CO;2-Y
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-024X%28200003%2930%3A3%3C259%3A%3AAID-SPE298%3E3.0.CO%3B2-Y
https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-024X%28200003%2930%3A3%3C259%3A%3AAID-SPE298%3E3.0.CO%3B2-Y
https://doi.org/10.1007/11877028_10
https://doi.org/10.1007/11877028_10
https://doi.org/10.1007/11877028_10
https://energyxxer.com/trident
https://energyxxer.com/trident
https://github.com/gnembon/fabric-carpet
https://github.com/gnembon/fabric-carpet
https://doi.org/10.1145/1449814.1449858
https://doi.org/10.1145/1449814.1449858
https://doi.org/10.1145/1449814.1449858
https://tossha.com/rpl/
http://resolver.tudelft.nl/uuid:76ab40b5-ccdb-4db1-95ef-db71c01e0c7f
http://resolver.tudelft.nl/uuid:76ab40b5-ccdb-4db1-95ef-db71c01e0c7f

BIBLIOGRAPHY

Hamey, Leonard G.C. and Shirley N. Goldrei (2008). “Implementing a Domain-Specific Lan-
guage Using Stratego/XT: An Experience Paper”. In: Electronic Notes in Theoretical Com-
puter Science 203.2. Proceedings of the SeventhWorkshoponLanguageDescriptions, Tools,
and Applications (LDTA 2007), pp. 37–51. ISSN: 1571-0661. DOI: https://doi.org/10.
1016/j.entcs.2008.03.043. URL: https://www.sciencedirect.com/science/article/
pii/S1571066108001485.

Kats, Lennart C.L., Karl T. Kalleberg, and Eelco Visser (2010). “Domain-Specific Languages
for Composable Editor Plugins”. In: Electronic Notes in Theoretical Computer Science 253.7.
Proceedings of the Ninth Workshop on Language Descriptions Tools and Applications
(LDTA 2009), pp. 149–163. ISSN: 1571-0661. DOI: https://doi.org/10.1016/j.entcs.2010.
08.038. URL: https://www.sciencedirect.com/science/article/pii/S1571066110001179.

Kats, Lennart C.L. and Eelco Visser (2010). “The Spoofax language workbench”. In: Com-
panion to the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, SPLASH/OOPSLA 2010, October 17-21, 2010, Reno/Ta-
hoe, Nevada, USA. Ed. by William R. Cook, Siobhán Clarke, and Martin C. Rinard. ACM,
pp. 237–238. ISBN: 978-1-4503-0240-1. DOI: 10.1145/1869542.1869592. URL: http://doi.
acm.org/10.1145/1869542.1869592.

Simon816 (2017). Command Block Assembly. URL: https://github.com/simon816/Command-
Block-Assembly (visited on 03/19/2022).

SPGoding (2019). Data-pack Helper Plus. URL: https : / / marketplace . visualstudio . com /
items?itemName=SPGoding.datapack-language-server (visited on 03/19/2022).

Spoofax Team (2021). Spoofax: The Language Designer’s Workbench. URL: https://spoofax.dev
(visited on 03/19/2022).

Stevertus (2020). McScript - a programming language for Minecraft. URL: https://mcscript.
stevertus.com/ (visited on 11/26/2022).

— (2022). ObjD - a framework for developing Datapacks for Minecraft. URL: https : / / objd .
stevertus.com/ (visited on 11/26/2022).

Visser, Eelco (1997). Scannerless Generalized-LR Parsing. Tech. rep. P9707. Programming Re-
search Group, University of Amsterdam.

— (2021). A Brief History of the Spoofax Language Workbench. URL: https://eelcovisser.org/
blog/2021/02/08/spoofax-mip/ (visited on 05/21/2022).

Yurihaia (2019). Machine and human readable documentation for all of Minecraft’s in-game NBT
data. URL: https://github.com/Yurihaia/mc-nbtdoc (visited on 05/21/2022).

ZipKrowdTeam(2016).Commandblock Parser. URL: https://web.archive.org/web/20190626002750/
http://zipkrowd.com/tools.htm#cbp (visited on 05/07/2022).

30

https://doi.org/https://doi.org/10.1016/j.entcs.2008.03.043
https://doi.org/https://doi.org/10.1016/j.entcs.2008.03.043
https://www.sciencedirect.com/science/article/pii/S1571066108001485
https://www.sciencedirect.com/science/article/pii/S1571066108001485
https://doi.org/https://doi.org/10.1016/j.entcs.2010.08.038
https://doi.org/https://doi.org/10.1016/j.entcs.2010.08.038
https://www.sciencedirect.com/science/article/pii/S1571066110001179
https://doi.org/10.1145/1869542.1869592
http://doi.acm.org/10.1145/1869542.1869592
http://doi.acm.org/10.1145/1869542.1869592
https://github.com/simon816/Command-Block-Assembly
https://github.com/simon816/Command-Block-Assembly
https://marketplace.visualstudio.com/items?itemName=SPGoding.datapack-language-server
https://marketplace.visualstudio.com/items?itemName=SPGoding.datapack-language-server
https://spoofax.dev
https://mcscript.stevertus.com/
https://mcscript.stevertus.com/
https://objd.stevertus.com/
https://objd.stevertus.com/
https://eelcovisser.org/blog/2021/02/08/spoofax-mip/
https://eelcovisser.org/blog/2021/02/08/spoofax-mip/
https://github.com/Yurihaia/mc-nbtdoc
https://web.archive.org/web/20190626002750/http://zipkrowd.com/tools.htm#cbp
https://web.archive.org/web/20190626002750/http://zipkrowd.com/tools.htm#cbp

Glossary

Apache VFS Virtual filesystem library for Java, supporting many different filesystems via a
common API. 25

ATerm Data exchange format used in and around Spoofax. Primarily used in the Stratego
meta-language to represent abstract syntax trees, optionally accompanied by annota-
tions. 46

class path Locations where the Java runtime searches for files, such as classes, at runtime.
Often used to load packaged resources. 46

command Line of text containing a single instruction for Minecraft to parse and execute. 1,
10, 15, 17, 27, 37, 39, 50

command block Building block in the gameMinecraft, which can be used to execute a com-
mand. See https://minecraft.fandom.com/wiki/Command_Block. 1

Eclipse Platform for IDE development. See https://wiki.eclipse.org/Platform. May also
refer to Eclipse IDE. See https://eclipse.org/ide. 2, 5, 19, 24

exit code Numeric value returned by a system process upon exit. Usually, a negative value
indicates termination by a signal, zero for success, and postive indicating an error. 44

Gazebo Name of the project described in this report. v, vii, 2, 5–7, 9–12, 16, 18, 19, 23, 33, 35,
37, 39, 40, 43–46, 49

Gazebo Runner Part ofGazebo Standalone, wrappingmost low-level interactionswith Spoofax
Core. 43, 45

Go The Go programming language. 11

Gradle Generic build automation system. See https://gradle.org/. 19, 46

Guice Dependency injection framework for Java. See: https://github.com/google/guice.
19, 43, 46

Java The Java programming language. 2, 6, 19, 33, 36, 43, 46

Javadoc Standardized format for documentation comments in Java code. 26

JavaFX Graphics framework for Java. See https://openjfx.io/. 19

31

https://minecraft.fandom.com/wiki/Command_Block
https://wiki.eclipse.org/Platform
https://eclipse.org/ide
https://gradle.org/
https://github.com/google/guice
https://openjfx.io/

GLOSSARY

JSGLR Java implementation of the SGLR algorithm (Visser 1997). The default parser used
in Spoofax, relying on parse tables generated by SDF3. 6, 7, 28

Kotlin The Kotlin programming language. 19

language archive ZIP-compressed package containing a compiled Spoofax project. 19, 20,
23, 43, 45, 46, 50

Maven Generic build automation system. See https://maven.apache.org/. 19

MCFunction Text format for batch execution of commands. 1, 8, 11, 17, 18, 40

Minecraft Popular video game. See https://minecraft.net/. i, 1, 8–11, 15–17, 22, 27, 28, 35

NaBL2 Spoofax’s Name Binding Language (‘enable’), version 2. 28

namespaced ID style of idendifiers used in Minecraft to identify arbitrary objects, always
within some given context (such as functions, tags, blocks). 35

Picocli Command-line arguments parser and dispatcher. See: https://picocli.info/. 19,
43

protocol ID Numeric identifier used by Minecraft to uniquely identify a thing within some
context. Usually only used on the wire. 49

Python The Python programming language. 22, 35, 37, 50

selector Query mechanism to select a subset of entities in a Minecraft world. vii, 10, 16, 40,
41

Spoofax The Spoofax Language Workbench. v, 2, 3, 5–7, 19, 21–28, 43–46, 50

Spoofax Core Collection of Java libraries which contain the parts of the Spoofax Language
Workbench which are not directly related to (implementation details of) a frontend,
such as an IDE. 3, 5, 19–21, 23–25, 43–46

Statix Meta-DSL for static semantics specification. See https://www.spoofax.dev/references/
statix/. 2, 6–8, 11, 15, 23, 24, 28, 50

Stratego Meta-DSL for program transformations. See https://www.spoofax.dev/references/
stratego/. 2, 6, 7, 17, 23–25, 28

strategy Unit of transformation logic in Stratego. 6, 8, 25, 28

Sunshine Project adding command-line support to Spoofax. See https://github.com/metaborg/
spoofax-sunshine. 19, 20, 25, 26, 46

VS Code Visual Studio Code. Popular open-source IDE by Microsoft. 22

ZIP Archive compression file format. 8, 45, 47

32

https://maven.apache.org/
https://minecraft.net/
https://picocli.info/
https://www.spoofax.dev/references/statix/
https://www.spoofax.dev/references/statix/
https://www.spoofax.dev/references/stratego/
https://www.spoofax.dev/references/stratego/
https://github.com/metaborg/spoofax-sunshine
https://github.com/metaborg/spoofax-sunshine

Acronyms

API application programming interface

AST abstract syntax tree

CLI command-line interface

DSL domain-specific language

ESV Editor Services

GUI graphical user-interface

GZB Gazebo surface/main syntax

GZBC Gazebo core syntax

GZBS Gazebo stand-alone

IDE integrated development environment

IR intermediate representation

IMP Interoperable Module Protocol

JAR Java Archive

JSON JavaScript Object Notation

JVM Java Virtual Machine

LLMC Low-Level Minecraft Commands

NBT Nabed Binary Tag

SDF3 Syntax Definition Formalism 3

SGLR scannerless generalized LR

SPI service provider interface

SSA static single assignment

StxLib Statix Library

33

Appendix A

Language Design & Features

In this appendix, we cover the feature set of the surface language, GZB, in more detail com-
pared to chapter 3. We divide the feature set into four major different categories: project/-
module structure, expressions, statements and the file structure. Additionally, some features
related to internals are discussed, such as registries and global aliases. Each feature, or sev-
eral related features, are illustrated with a small example and a rationale.

A.1 Modules: Project Directory and File Structure
In order for a Gazebo project to be compiled properly, it must follow a certain file structure.
Our intention is to allow cooperationwith existingMinecraft project structures, which is why
we stick to the convention of thinking in namespaced ID-oriented terms. A typical project
structure is shown in listing A.1. Here, the files a.gzb and b.gzb have the full module names
my_namespace:a and my_namespace:my_nested_module~b, respectively. If for some reason a
different module name is desired, it can be changed by explicitly specifying it in the GZB file
on the first line, for example, module my:override~module.

The differences between namespaces, names and modules are subtle, but important. A
module is a Gazebo concept, while namespaces and names areMinecraft concepts. A names-
pace with a name combined is called a namespaced ID, which, when used in the context of
Gazebo files, refer to modules. The namespace part is separated from the name part by a
colon (:). So, modules are identified by a namespaced ID, but an arbitrary namespaced ID
does not necessarily refer to a module.

Modules are useful for grouping re-usable code, aswell as for proper organization. There-
fore, modules can import members from other modules. There are two ways of accessing
members of other modules: explicitly importing them, or referring to them by their module-
qualified name.

Explicitly importing module members can be done in several different ways, comparable
to the import syntax of Python. Examples of the import syntax are shown in listing A.2.

project_root/
data/
my_namespace/
gazebo/
my_nested_module/
b.gzb

a.gzb
Listing A.1: Typical project structure of a Gazebo project

35

A. LANGUAGE DESIGN & FEATURES

use other_ns:path~to~member // becomes available as 'member'
use some_ns:a~b as custom_name // becomes available as 'custom_name'
from relative_path use a, b as c // become available as 'a' and 'c', respectively
from :rel~to~root use * // all members from :rel~to~root become available

Listing A.2: Explicitly importing members from other modules

From these examples, it can be seen that there are not only different ways of expressing
how to import members, but also different ways of expressing where to import from. Fully
qualified identifiers arewrittenwith a namespace and name part, separated by a colon. How-
ever, both the namespace part and the namespace part in conjunction with the colon are op-
tional. Their meaning is context-sensitive, as the following rules apply, independent of the
import syntax:

• If the namespace part is omitted, the current namespace is used. For example, :a~b
resolves to current_namespace:a~b.

• If the namespace part including the colon is omitted, the member is resolved relative
to the current module. However, if that appears to be invalid, it is resolved relative to
the gzb: or minecraft: namespace instead (in that order). For example, a~b resolves to
current_namespace:current~module~a~b, while text~say resolves to minecraft:text~say,
assuming there is no relative module named text.

Only the first rule applies to the ad-hoc module member reference syntax. This less rec-
ommended syntax can be used to refer to members of other modules without having to first
import them. Use-cases of this syntaxwill become clear in the following sections, as we show
more examples.

A.2 Body: Expressions
Starting from the expressions we gradually build up to the file structure. In order to be able
to actually write any statements, we need to know which expressions are available and how
they are supposed to be used.

A.2.1 Literals and Named Binary Tag
All literals in GZB follow the same syntax as that from the game, which effectively is Java’s
syntax for string and numeric literals. One exception is the syntax for booleans: the game
does not have a concept of boolean values, but represents them as byte values of 0 and 1.
Therefore, the boolean type and syntax inGZB is purely syntactic sugar, as they are translated
to byte literals in the end. They do still serve a purpose, as integral values are not valid to be
used interchangeably with boolean values.

The data structures lists, arrays and compounds are also fully inspired by the game’s
syntax. The notations for lists is intuitive, but the notation for arrays is a bit more exotic:
after the opening bracket a semicolon indicates the fact that this is an array. This notation
corresponds to the type syntax, but without the type explicitly specified, as it is inferred
from the array’s elements. Compounds are again straightforwardlymodelled after JavaScript
Object Notation (JSON).

These two clusters of literals and data structures are commonly referred to as a textual
representation of the Nabed Binary Tag (NBT) format, a JSON-like binary data format, used
by the game to serialize the world state for savegames. Listing A.3 demonstrates all literals,
in conjunction with data structures.

36

A.2. Body: Expressions

string := "Hello"
bool_true := true ; bool_false := false
long := 2L ; int := 1 ; short := 3s ; byte := 4b
array := [; int, long, short]
list := [1, 2]
compound := { key1: string, "key 2": 123 } // string keys are fine too

Listing A.3: Literals and data structures in GZB

@e[type==$chicken, is "My_Tag"] // eq. @e[type==$chicken, tag="My_Tag"]
@r[dx=10, dy=10, dz=10] // select a random player in a 10x10x10 radius

Listing A.4: Selectors in GZB

A.2.2 Selectors
Selectors are used to query entities in game. It always exists of one or two parts: an at-symbol
(@) followed by the selector base, optionally followed by a list of filter conditions, called props.
Given props, the query result of the base selector may be narrowed down more.

In the game’s command syntax, it is only possible to use one of the primitive selector
bases, as listed below. In Gazebo however, any other valid identifier may be used, which we
then refer to as an alias. Details about these aliases will be further expanded on in section
A.4.2.

The base selectors and their behavior explained:

• @e: select all entities.

• @a: select all players, i.e. entities of the type player ([@e[type==$player]]).

• @p: select the nearest player. This is the same as @a but sorted by nearest distance and
limited to 1 result (@a[sort="nearest", limit=1]).

• @r: select an arbitrary player. Similar to @p butwith randomsorting (@a[sort="random", limit=1]).

• @s: select the sender, which is always derived from some entity, but may have some in-
ternal state differ from the original entity. Who is the sender is highly context-dependent,
as it refers to the entity that issued or was issued to execute the command. The closest
syntactical representation of the sender is @e[type==magically-inferred, limit=1].

A plethora of different filter props are available. Describing each of them in detail is
beyond the scope of this report. In general, without further explanation in this section, there
are two kinds of filter props: key-value and comparison. This leads to two different syntaxes,
primarily geared towards readability of the GZB code, as the key-value-only syntax that the
game uses conveys little semantic information.

In listing A.4, several examples of selectors are given, each with different filter props.
Note the usage of the is keyword, which is syntactic sugar for the tag filter prop.

A.2.3 Arithmetic and Boolean Logic
All conventional arithmetic and boolean logic operators are supported, with the addition of
a few domain-specific operators.

Boolean conjunctions, disjunctions and negations use the Python-style syntax, i.e. using
the and, or and not keywords, respectively. Comparison operators resulting in a boolean

37

A. LANGUAGE DESIGN & FEATURES

a := 1
func example(c Int) {
complex := { a: [1, 2] }
complex.a[0] *= 3
b := complex."a"[1] // ."a" is equivalent to .a
b += a
b -= c
if b > 0 { d := 123 }
b = d // error: d not defined (out of scope)

}
Listing A.5: Variable declaration, referencing and assignment in GZB

value are supported depending on the type of the values that are compared. Specifically to
check whether a numeric value falls within a particular range, the matches operator is used.

A.3 Body: Statements and Control Flow
In this section, we cover some statements and control flow mechanisms that were not dis-
cussed in the main text.

A.3.1 Variable Declaration, Referencing and Assignment
Variables are declared by a name and a value, separated by the walrus operator (:=). Types
are intentionally not possible to specify, as this is guaranteed to never be necessary. A variable
can be reassigned by using the single-equals operator (=), including shorthand operators
such as += and -=.

Variables are referenced by the exact same name as they are declared. However, it is
possible to narrow down on a variable before assigning to or referencing it. This can either
be done using the bracket index notation for lists and arrays ([...]), or by using the dot
access notation (.) for compound types. The access notation is normally used with regular
identifiers, but any string key can be used as well.

The reason to have two separate operators for declaration and reassignment is to avoid
confusion about where the initial value is assigned. It also serves as an explicit reference
point.

Listing A.5 shows a few examples.

A.3.2 Execute
The execute statement is a control flow statement that can execute its body block in a wide
variety of ways. Contrary to all other control flow statements, the execute statement is very
feature-rich and forms the core of the domain-specificity of the language.

The keyword for this statement is actually not execute, but differs based on the variant
used. There are about a dozen different variants, each with a different purpose. As often
several variants are desired to be combined, we allow syntax-free chaining of the variants,
called fragments: all other statements require the body block to be either put in curly braces,
or be a single statement with a fat arrow.

As with all other features, this statement corresponds to some in-game mechanic. In
particular, this corresponds to the execute command, which happens to be more expressive
than this statement. The reason is that the if and unless sub-commands are actually imple-

38

A.3. Body: Statements and Control Flow

as @a => say("Hello!") // prints in chat "[player name] Hello!", for each player
// the following two examples assume the sender is a player in 'The Overworld',
// positioned at (80, 32, 80)
in $the_nether => teleport(`(~ ~ ~)) // teleports to (10, 32, 10) in 'The Nether'
in $the_nether positioned as @s => teleport(`(~ ~ ~)) // idem, but to (80, 32, 10)
// the trick here is that ---^ refers to the sender, which has the 'old' properties,
// and thus holds the untranslated coordinates ('The Nether' has a 1:8 scale)

Listing A.6: Execute statement in GZB

mented via a higher-level statement, namely the if-statement, which additionally offers an
else-branch.

We remain with eleven different fragments to be used in the execute statement:

1. align: align the sender’s position along the x-, y-, z-axis, or any combination of these,
by flooring the values of the given axes.

2. anchored: update the execution anchor. Either eyes or feet.

3. as: execute subsequently as allmatching entities, but do notmodify the sender position.

4. at: execute subsequently at all matching entities’ positions, rotation and dimension,
but do not modify the sender’s identity.

5. facing: execute subsequently with rotation (yaw and pitch) set such that the sender is
facing the given coordinates.

6. facing entity: execute subsequently with pitch and yaw set such that the sender is
facing the target, for all matching target entities.

7. in: switch to the given dimension. Performs coordinate translation if applicable.

8. positioned: set the execution position to the given coordinates.

9. positioned as: execute subsequently at all matching entities’ positions only, without
affecting any other properties.

10. rotated: set the execution rotation to the given yaw and pitch angles in degrees.

11. rotated as: execute subsequently with rotations of all matching entities, but do not
modify any other properties.

To demonstrate the usage of this statement, including the ‘chaining’ of different frag-
ments, we give an example in listing A.6.

A.3.3 Raw
Some features of the game are not available through the surface language, but may still be
useful to use. For this purpose, the raw statement is provided. This allows arbitrary com-
mands to be emitted, comparable to inline assembly in low-level programming languages.
Our current implementation does not check whether the raw command is actually valid.

This feature is mostly useful for the standard library, as it has to provide a Gazebo-
compatible interface to the game’s commands. A piece of the standard library, the say func-
tion, is listed in listing A.7.

As can be seen there, everything between the pipe symbols (|) is the raw command.
Variables in scope can be formatted in-place by the percentage sign (%).

39

A. LANGUAGE DESIGN & FEATURES

func say(text String) {
raw |say %text|

}
// calling say("Hello") will emit exactly the following command:
// say Hello

Listing A.7: Raw statement in GZB: the say function

func sum(a, b Int) -> Int = a + b
func mul(a, b Int) -> Int { return a * b }
func say_hello { say("Hello") }

Listing A.8: Functions in GZB

A.4 Files: Top-Level Entries
Each file being a module is further divided into members of that module. From the perspec-
tive of a file, these are its top-level entries. There are four kinds of top-level entries, each of
which we cover in a subsection: functions, selector aliases, variable declarations, and type
declarations.

A.4.1 Functions
Functions form the core of Gazebo are the most important feature for programmers. In all
ways, these are similar to the general idea of what a function is, contrary to a MCFunction.
Gazebo functions may take arguments and may return a value, which is demonstrated in
listing A.8, while MCFunctions cannot take arguments; they can only be executed in full and
will always continue at the caller, without the possibility of explicitly receiving or returning
values.

Note that there are different ways of writing a function: most elements of the signature
are optional. A minimal function definition is a name accompanied by a body. The body can
either be an expression (= ...), a single statement (=> ...), or a regular block ({...}).

Should a function take parameters, it is possible to specify them in parentheses after
the name, otherwise parentheses can be omitted. Each parameters is denoted by its name
followed by its given type. Arguments of the same type may be grouped, by providing
a list of names followed by a type that applies to all in the preceding list. For example,
(a, b Int, c, d String) means that a and b are of type Int, whereas c and d are of type
String.

If the function should return a value, it can be specified after the name and parameters
by -> followed by the expected type. If no return type is specified, the function cannot return
a value, and is typed as void.

A.4.2 Selector Aliases
As a convenience, Gazebo provides a way to refer to commonly used selectors by an alias.
These aliases can be used in the sameway as any other built-in selector. The syntax of aliases
is very straightforward and demonstrated in listing A.9.

A.4.3 Variable Declarations
Any variable can be declared as a module top-level entry. This means that they become
available for usage in other modules. In all other regards, global variables behave identically

40

A.4. Files: Top-Level Entries

alias @MySelector = @e[sort="nearest", limit=20]
alias @OtherSelector = @MySelector[is "my_tag"]

Listing A.9: Selector aliases in GZB

to local variables (see section A.3.1).

A.4.4 Type Declarations
Similar to how selectors can be aliased, types can too. As was explained in section 3.2, the
type system is purely structural, therefore type declarations are only a convenience feature.

A type is declared by a name followed by the expansion of the type. There, any type can
be used. Self-references are allowed, but may lead to scenarios where it is not possible to
construct a value for the type.

41

Appendix B

Architecture of the Stand-Alone
Compiler

An integral part of the user experience with Gazebo is its stand-alone compiler. Conven-
tionally, Gazebo offers this as a CLI, referred to as GZBS. This chapter covers most high-
level implementation considerations, listswhich technologieswere used, and discusses some
Spoofax-specific details.

As this appendix is intended to be a continuation of section 3.4, we assume the reader to
be familiar with the ideas discussed there. The first section gives a schematic summary of the
entire architecture. Remaining sections are dedicated to specific important implementation
details.

B.1 Visual Summary
Figure B.1 shows a visual representation of the global summary that now follows.

The JVM starts execution at the main class of the CLI distribution, which immediately
transfers control to Picocli to parse the command-line options. By means of the Java service
provider interface (SPI), as described in section B.4, the language archives are gathered. To-
gether with some configuration options for the standard libraries, the Gazebo configuration
is created.

Transferring control to the main logic, the Gazebo module is initialized by the Gazebo-
SpoofaxFactory. According to the procedure described in section B.5, the Guice modules are
configured and language archives are registered. As the GazeboModule extends the Spoofax-
Module (which in turn extends the MetaborgModule), all Spoofax Core services are bound and
initialized.

Now that Spoofax is properly initialized, control is handed back to :cli where relevant
overlay tasks are picked from what :lib offers. Together with the path to the root of the
project and message printer configuration, a configuration for the Gazebo Runner is created.
These tasks are described in more detail in section B.3.

Once again, control transfers to the main logic, where the Gazebo Runner communicates
with Spoofax to initialize the project instance, configuring meta-languages (for example, en-
abling Statix message formatting), source paths within the project, and internal dependen-
cies on the Gazebo language projects.

Now the ‘build input’ is configured, describing how Spoofax should build the project,
which includes message-printing configuration. Full control is then handed to the Spoofax
Core build system. GZBS now synchronously waits until the build result becomes available.

If the Spoofax part of the build completed successfully, all overlay tasks will be executed
in sequential order. The project and output information is passed to the overlay tasks, as they
may use this.

43

B. ARCHITECTURE OF THE STAND-ALONE COMPILER

Finally, the final result status is printed and GZBS terminates with the proper exit code.

:lib (overlay tasks)

:lib

:langsapi

:cli

picocli:
parse CLI options

start

:defaultlibs

gather Gazebo
configuration

DefaultLanguages
Provider

S
er

vi
ce

Lo
ad

er

GzbsLanguage
Provider

init Gazebo module configure module
overrides

configure overlay
task chain

init Spoofax module

call Gazebo runner configure Spoofax
project (e.g. Statix settings)

attach message
printers

configure build input

error

success

call Spoofax's
processorRunner

run overlay tasks

report error

report success

write pack.mcmeta

write tag
registrations

compress data pack
to ZIP archive

Figure B.1: Schematic of the GZBS architecture, most relevant parts

B.2 Message Printing and Logging
Message printing in Spoofax Core is mostly a solved problem, by providing an implementa-
tion of the IMessagePrinter interface. The default implementation is only capable of writing
to a single OutputStream. This is the reason that some custom message wiring still was nec-
essary to be implemented.

One implementation is the AggregateMessagePrinter which allows wiring a broadcast
set of other message printers. Additionally, as a workaround to the fact that some Spoofax
meta-languages emit HTML-formatted messages, we added an unescape filter to transform
the HTML content to (terminal-suitable) plaintext.

Logging of Spoofax and Gazebo internals is fully handled by the commonly used SLF4J1
API and the default SimpleLogger2 back-end. It prints all log entries above or equal to a
configurable severity level to the standard error stream, which is usually the user’s terminal.

1https://www.slf4j.org/
2https://www.slf4j.org/api/org/slf4j/simple/SimpleLogger.html

44

https://www.slf4j.org/
https://www.slf4j.org/api/org/slf4j/simple/SimpleLogger.html

B.3. Overlay Task Structure

val runnerConfig = /* ... */
val compress = true
GazeboRunner(runnerConfig)
.withOverlayTask(
EmitDataPackTask(EmitDataPackTask.PackFormat.VERSION_9)
.runIf(compress) {
chain { dataPackLoc ->
CompressDataPackTask(dataPackLoc)

}
}

)
.run(spoofax)

Listing B.1: Usage example of GZBS overlay task chaining

Although Spoofax does include several loggermanagement classes, they all dispatch to SLF4J
in the end.

B.3 Overlay Task Structure
Some responsibilities of GZBS, as described in the following sections, are not necessarily
Spoofax-concerned, but still need to be executed in relation to inputs or outputs. It is im-
possible to extend Spoofax Core API natively with additional build steps, as the entire build
sequence is hard-coded, hence we implemented a simple task mechanism built around the
Spoofax builder. A usage example is given in listing B.1.

Gazebo Runner accepts any number of overlay tasks. Once the results from the Spoofax
builder are available, all these tasks are executed sequentially, in order of registration.

This does not allow simple sharing of task results between tasks. The ‘emit data pack’ and
‘compress data pack’ tasks are examples of tasks that do depend on each other, sequentially.
By implementing a helper task, called ChainedTask, any task can be sequenced after any other
task, passing the result of the first to the second.

The overlay tasks that are available are the following three:

• Emit data pack: create directory structure, write pack.mcmeta and write tag registra-
tions.

• Compress data pack: apply ZIP compression to a data pack directory structure.

• Emit StxLib: make a Statix project library, applying necessary patches3.

B.4 Language Archive Loading
The language archives that make up Gazebo as a whole, as mentioned in the overview, need
to be made available to Spoofax Core in order for them to be loaded and wired up.

From the perspective of Spoofax Core it is not important where these archives reside.
The API provides a language discovery service, which can be instructed to look for language
archives at a particular location. The locations where to load from, either a file or a directory,
are provided automatically by GZBS.

3At the time of writing, Statix requires applying some patches to the .stxlib file before it can acutally be
used. See: https://www.spoofax.dev/howtos/statix/migrating-to-concurrent-solver/#using-libraries.

45

https://www.spoofax.dev/howtos/statix/migrating-to-concurrent-solver/#using-libraries

B. ARCHITECTURE OF THE STAND-ALONE COMPILER

This is in clear contrast to Sunshine which requires the locations to language archives
to be configured via command-line arguments. GZBS implements automatic discovery and
loading of language archives by leveraging Java’s SPI framework.

The SPI interface is defined in the :langsapi module, which is referenced by :lib and
implemented by :defaultlibs. The :defaultlibs module returns paths to all the language
archives. A custom Gradle task makes sure that these paths are included in the JAR of
:defaultlibs, as to make them available on the class path.

While in practice the collection of language archives does not change within a particular
build of GZBS, the SPI architecture lends itself more to future extensibility. The main ad-
vantage is that this architecture theoretically allows for this, without having to modify any
of the current code. Supplying a JAR on the class path that implements the SPI interface is
sufficient, as the discovery is fully handled by the Java runtime.

B.5 Intermediate Passing Optimization
The Gazebo architecture works on the basis of having three distinct languages, which are
separated in isolated projects and transformed between by the extension projects (see chapter
2).

Spoofax Corewrites the result of a transformation to disk. It does not care about the exact
contents of this output: it is an ATerm (Brand et al. 2000) that is merely converted to a string
representation. The only exception is that, if it is a string at top-level, no quoting is applied.

The syntax service from Spoofax Core is responsible for reading and parsing source files,
in order to be further processed by the build system via analysis and transformation stages.
This service however, does require the source file it loads to be formed according to the syntax
associated with the respective extension, as it is fed though a dynamically selected parser. In
practice, this turns out to only be overhead for very specific occasions.

When executing the transformations from within the Eclipse environment, it is to be ex-
pected that the current file on which the transformation action is executed is properly for-
matted. However, this is not necessarily true for a fully stand-alone pipeline. Invoking an
integrated pipeline, to the user, only appears as one big black box which accepts files format-
ted according to the surface syntax and emits files formatted according to the target syntax.
Only for human inspection it might be beneficial to read the intermediate files in a pretty-
printed form.

The pretty-printing by the transformation followed by immediate parsing by the next
build step is wasteful in terms of processor cycles. GZBS mitigates this overhead by emitting
the rawAST from a transformation and overriding the syntax service such that it skips parsing
altogether if it notices such a raw AST.

A raw AST is indicated by the file of interest having the format .+\.aterm-speed\.[^.]+,
expressed as a regular expression. In all other cases, the default SpoofaxSyntaxService is
called, allowing for full backwards compatibility.

Overriding the syntax service is achieved by overriding the binding to Spoofax’s ISpoofax-
SyntaxServicewith the new ATermSpeedSyntaxService. By default this is not possible, as the
syntax service interface is already bound to SpoofaxSyntaxService in the SpoofaxModule. For-
tunately, Guice allows module overriding during initialization, used in the GazeboSpoofax-
Factory.

B.6 Result Data Pack Packaging
The last stage of the compiler emits the MCFunction files, already in the structure that is ex-
pected by the game. Still, it is not possible for the game to load these files directly. Some

46

B.6. Result Data Pack Packaging

additional processing is still necessary: writing meta data, writing tags and optionally ap-
plying ZIP compression.

First of all, we describe the meta data file. This is a file in the root directory of the data
pack, named ‘pack.mcmeta’. Its contentsmust be formatted in JSON format. The file contains
a compatibility identifier and a descriptive string which may be shown to the user. The cur-
rent implementation of GZBS statically emits this file, i.e. it is not possible to give a custom
data pack description.

Secondly, tag registrations are emitted, if applicable. This is a general post-processing
task which scans all output files, collects all tag registrations, and writes these to the appro-
priate location in the data pack. All files are scanned for IMP headers, specifically for the
@context annotation, which, according to the IMP specification (Arcensoth 2020), indicate
in which tag contexts a function is expected to be run. These tag registration files are JSON-
formatted, containing a list of function identifiers.

These two tasks create a well-formed data pack, but leave everything in a plain directory
structure. For ease of use, the game cannot only read from such a directory, but addition-
ally supports ZIP archives. GZBS will archive and compress the directory structure if the
--compress CLI flag is specified, simplifying the development process.

47

Appendix C

Standard Libraries

One of our promises is static typing for almost everything. In order to achieve this goal, we
need to provide all necessary typing information to the type checker. Precisely this informa-
tion is what standard libraries aim to provide.

This chapter describes what is contained in the standard libraries. Additionally, we out-
line the construction procedure by which these libraries are built. Finally, we discuss some
practically applied performance tweaks.

C.1 Standard Library Contents
Without any libraries, Gazebo works perfectly fine, except that it requires a lot of boilerplate
code to start writing useful programs. The standard library aims to provide most, if not all,
of this boilerplate code. On a high level, this can be viewed as three distinguished aspects:

Entity Data Structures All entities in the game can be read and often also modified. The
standard library defines the data structures that are accompanied by each entity.

Registries The game categorizes many things into registries: collections of itemswith some
meta-data associated. Entity types are an example of this, which are always accompanied by
a data structure. Another important registry is the block type registry, which lists all legal
states for each block.

All registries and registrations include protocol IDs. This is intended to be used for
compile-time reflection operations, such as creating a function that produces the protocol
ID given the coordinates of a block at runtime.

CommandWrappers The game provides many useful commands, which are directly avail-
able using the raw notation. To prevent usage of this unsafe mechanism, the standard library
wraps most commands in a fully type-safe way.

C.2 Automated Construction
The standard library is constructed from several sources. Only a small part is hand-written,
whereas the majority is generated1. As most of the contents are repetitive and following the
same general structure, auto-generation lends itself very well. Moreover, both the game’s
developers and the community provide high-quality structured data sources.

1At time of writing, approximately 20-30 kSLOC are generated

49

C. STANDARD LIBRARIES

We strongly rely on two of such sources: Yurihaia (2019)’s mc-nbtdoc and Arcensoth
(2018)’s mcdata repository. The former contains partially automatically generated and man-
ually annotated data structure definitions, covering most of the game data that can be ac-
cessed via commands. The latter only contains data generated by the game itself, but made
more accessible. Additionally, some minor post-processing is already done on that data.

These sources are combined by the Python script2, processed, and written to disk. Since
this does not yet cover all our promises for the standard library contents, we finalize the
source code emission by copying the ‘overlay’ directory structure3 onto the output from the
first stage. These overlay files contain hand-written GZB source code. To prevent overlay
files from overriding automatically generated files, we concatenate the file contents in case
the destination file already exists.

In short, the standard library source text in GZB is constructed in the following sequence:

1. Create data structure definitions according to mc-nbtdoc (Yurihaia 2019).

2. Create registries according to mcdata (Arcensoth 2018).

3. Apply static overlay files.

C.3 Performance Considerations
Without any further processing of the raw source text, the standard library can be packaged
into a language archive, which in turn is configured as a source dependency of the user
project. By Spoofax’s include-file discovery mechanism, the files are automatically taken
into account while building a project.

Unfortunately, this comes at a relatively high cost: most compilation time is spent on static
analysis of the standard library, even if the user project does not reference anything from
it. Statix offers a feature called ‘project libraries’4, which, for convenience, we abbreviate to
StxLib. This allows us to analyze the standard library, store and package these results, and
use them in the user project instead of the includes.

Although it might sound counterintuitive, no complex bootstrapping procedure is re-
quired to achieve this. After we emit the source code of the standard library, GZBS (see
appendix B) is invoked in a special way which does not require the standard library. Com-
pared to the default compilation pipeline, some steps are skipped, and some other steps are
added, such as the creation of a StxLib file. Finally, the StxLib and original sources are then
packaged into the conventional language archive.

For ease of further integration in a later stage, we also create standard library language
archives for the two other intermediate languages, by applying the source transformations.
In practice, the size of these intermediate standard libraries is small, as there are few function
definitions; most of the standard library is dedicated to type definitions. As the intermediate
languages do not require static analysis, there is no need to create any other StxLibs.

2https://github.com/MetaBorgCube/gazebo/blob/master/gen/gen.py
3https://github.com/MetaBorgCube/gazebo/tree/master/gen/overlay/
4https://www.spoofax.dev/howtos/statix/migrating-to-concurrent-solver/#using-libraries

50

https://github.com/MetaBorgCube/gazebo/blob/master/gen/gen.py
https://github.com/MetaBorgCube/gazebo/tree/master/gen/overlay/
https://www.spoofax.dev/howtos/statix/migrating-to-concurrent-solver/#using-libraries

	Contents
	List of Figures
	List of Tables
	Introduction
	Pipeline Summarized
	A Brief Intro to Spoofax and Compiler Construction
	Schematic Overview

	Implementation Key Aspects
	High-Level Language Design and Features
	Type System
	Transformation Architecture
	Stand-Alone Compiler

	Project Evaluation
	Learning Points
	State of Completion
	Minecraft Support Considerations

	A Review of Spoofax 2
	Architectural Limitations
	Using Spoofax in Stand-Alone Fashion

	Conclusion & Future Work
	Bibliography
	Glossary
	Acronyms
	Language Design & Features
	Modules: Project Directory and File Structure
	Body: Expressions
	Body: Statements and Control Flow
	Files: Top-Level Entries

	Architecture of the Stand-Alone Compiler
	Visual Summary
	Message Printing and Logging
	Overlay Task Structure
	Language Archive Loading
	Intermediate Passing Optimization
	Result Data Pack Packaging

	Standard Libraries
	Standard Library Contents
	Automated Construction
	Performance Considerations

